封面
市场调查报告书
商品编码
1639205

化合物半导体市场机会、成长动力、产业趋势分析与预测 2024 - 2032

Compound Semiconductor Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 200 Pages | 商品交期: 2-3个工作天内

价格
简介目录

全球化合物半导体市场到2023 年价值为445 亿美元,预计2024 年至2032 年将以10.9% 的复合年增长率增长。频等领域提供卓越的性能。这些材料在电信、电动车、再生能源和航太领域表现出色,其处理极端条件、更高功率和耐热性的能力超过了传统的硅半导体。

市场的主要驱动力之一是对高性能材料的先进技术的需求不断增长。化合物半导体在功率效率和耐热性方面优于硅,使其非常适合下一代应用。例如,在电信领域,这些材料对于 5G 基础设施和卫星通讯至关重要,其中高频和最小能量损失至关重要。此外,它们的坚固性使其非常适合在恶劣环境中使用,例如可靠性至关重要的国防和航太。

市场根据材料类型进行细分,包括 GaN、砷化镓 (GaAs)、碳化硅 (SiC)、磷化铟 (InP)、硅锗 (SiGe) 和磷化镓 (GaP) 等。 GaN 领域预计将大幅成长,到 2032 年将达到 250 亿美元。这使其成为电力电子、射频 (RF) 设备和高效系统的关键材料,特别是在 5G 等应用中。

市场范围
开始年份 2023年
预测年份 2024-2032
起始值 445 亿美元
预测值 1,116 亿美元
复合年增长率 10.9%

就沉积技术而言,市场包括化学气相沉积(CVD)、分子束外延(MBE)和氢化物气相外延(HVPE)等方法。其中,MBE 因其能够在原子层面上精确控制薄膜沉积、确保生产高品质、无缺陷的层而受到关注。这在量子计算、光电子和高频设备等材料纯度至关重要的领域尤其有价值。

2023年美国化合物半导体市场将占据30.6%的份额。美国在半导体研发方面也处于领先地位,这得益于旨在增强国内製造业和减少对进口依赖的措施。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
    • 影响价值链的因素
    • 利润率分析
    • 干扰
    • 未来展望
    • 製造商
    • 经销商
  • 供应商格局
  • 利润率分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 电动汽车和再生能源
      • 小型化、紧凑化设计要求
      • 5G网路快速发展
      • 研发投入不断增加
      • 不断增长的光子学和光电子学需求
    • 产业陷阱与挑战
      • 生产成本高
      • 材料可用性和供应链风险
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按沉积技术,2021-2032 年

  • 主要趋势
  • 化学气相沉积 (CVD)
  • 分子束外延
  • 氢化物气相外延 (HVPE)
  • 氨热法
  • 液相外延
  • 原子层沉积 (ALD)
  • 其他的

第 6 章:市场估计与预测:按类型,2021-2032 年

  • 主要趋势
  • 氮化镓
    • 氮化铝镓 (AlGaN)
    • 氮化铟镓 (INGAN)
  • 砷化镓 (GAAS)
    • 砷化铝镓 (ALGAAS)
  • 碳化硅(SiC)
  • 磷化铟 (INP)
  • 硅锗 (SIGE)
  • 磷化镓 (GAP)
    • 磷化铝镓 (ALGAP)
  • 其他的

第 7 章:市场估计与预测:依产品分类,2021-2032 年

  • 主要趋势
  • 引领
  • 光电
  • 射频元件
    • 射频功率
    • 射频开关
    • 其他射频设备
  • 电力电子
    • 离散的
      • 电晶体
        • 金属氧化物场效电晶体 (MOSFET)
        • 高电子迁移率电晶体 (HEMT)
    • 二极体
      • 肖特基二极体
      • PIN二极体
    • 裸晶片
    • 模组

第 8 章:市场估计与预测:按应用划分,2021-2032 年

  • 主要趋势
  • 一般照明
  • 电信
  • 军事、国防和航太
  • 汽车
  • 电源
  • 数据通讯
  • 消费性展示
  • 商业的
  • 消费性设备
  • 其他的

第 9 章:市场估计与预测:按地区,2021-2032 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯

第 10 章:公司简介

  • Advanced Wireless Semiconductor Company
  • Ams osram ag
  • Cree Inc.
  • Gan systems
  • GaN Systems Inc.
  • Infineon technologies ag
  • Microsemi Corporation (Microchip Technology Inc.)
  • Mitsubishi electric corporation
  • Mitsubishi Electric Corporation
  • Nichia corporation
  • Nxp semiconductors nv
  • ON Semiconductor Corp. (Semiconductor Components Industries Llc)
  • Qorvo, inc.
  • Renesas electronics corporation
  • Samsung electronics co., ltd.
  • Skyworks solutions, inc.
  • STMicroelectronics NV
  • Taiwan Semiconductor Manufacturing Company Ltd.
  • Texas Instruments Inc.
  • WIN Semiconductors Corp.
  • Wolfspeed, inc.
简介目录
Product Code: 12298

The Global Compound Semiconductor Market, valued at USD 44.5 billion in 2023, is projected to grow at 10.9% CAGR from 2024 to 2032. This growth is driven by the distinct advantages of compound semiconductors, which provide superior performance in high-frequency, high-power, and energy-efficient applications. These materials excel in telecommunications, electric vehicles, renewable energy, and aerospace, where their ability to handle extreme conditions, higher power, and heat resistance surpasses traditional silicon semiconductors.

One of the key drivers of the market is the growing demand for advanced technologies that require high-performance materials. Compound semiconductors outperform silicon in terms of power efficiency and heat resistance, making them well-suited for next-generation applications. For example, in telecommunications, these materials are critical for 5G infrastructure and satellite communications, where high frequencies and minimal energy loss are essential. Additionally, their ruggedness makes them ideal for use in harsh environments, such as defense and aerospace, where reliability is paramount.

The market is segmented based on material type, including GaN, gallium arsenide (GaAs), silicon carbide (SiC), indium phosphide (InP), silicon germanium (SiGe), and gallium phosphide (GaP), among others. The GaN segment is anticipated to grow significantly, reaching USD 25 billion by 2032. GaN is highly sought after for its wide bandgap, which enables it to handle high voltages, frequencies, and temperatures. This makes it a key material for power electronics, radio frequency (RF) devices, and high-efficiency systems, particularly in applications such as 5G.

Market Scope
Start Year2023
Forecast Year2024-2032
Start Value$44.5 Billion
Forecast Value$111.6 Billion
CAGR10.9%

In terms of deposition technologies, the market includes methods such as Chemical Vapor Deposition (CVD), Molecular Beam Epitaxy (MBE), and Hydride Vapor Phase Epitaxy (HVPE). Among these, MBE is gaining traction due to its ability to precisely control thin film deposition at the atomic level, ensuring the production of high-quality, defect-free layers. This is particularly valuable in fields like quantum computing, optoelectronics, and high-frequency devices, where material purity is crucial.

U.S. compound semiconductor market in 2023 held 30.6% share in 2023. The region is seeing rapid growth driven by investments in high-performance applications, such as 5G networks, electric vehicles, and renewable energy technologies. The U.S. is also a leader in semiconductor research and development, bolstered by initiatives aimed at enhancing domestic manufacturing and reducing dependence on imports.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021-2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Key news & initiatives
  • 3.5 Regulatory landscape
  • 3.6 Impact forces
    • 3.6.1 Growth drivers
      • 3.6.1.1 Electric vehicles and renewable energy
      • 3.6.1.2 Miniaturization and compact design requirements
      • 3.6.1.3. Rapid development of 5 G networks
      • 3.6.1.4 Rising R&D investment
      • 3.6.1.5 Growing photonics and optoelectronics demand
    • 3.6.2 Industry pitfalls & challenges
      • 3.6.2.1 High production costs
      • 3.6.2.2 Material availability and supply chain risks
  • 3.7 Growth potential analysis
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Deposition Technologies, 2021-2032 (USD Million)

  • 5.1 Key trends
  • 5.2 Chemical Vapor Deposition (CVD)
  • 5.3 Molecular Beam Epitaxy
  • 5.4 Hydride Vapor Phase Epitaxy (HVPE)
  • 5.5 Ammonothermal
  • 5.6 Liquid phase epitaxy
  • 5.7 Atomic Layer Deposition (ALD)
  • 5.8 Others

Chapter 6 Market Estimates & Forecast, By Type, 2021-2032 (USD Billion & Units)

  • 6.1 Key trends
  • 6.2 GaN
    • 6.2.1 Aluminum Gallium Nitride (AlGaN)
    • 6.2.2 Indium Gallium Nitride (INGAN)
  • 6.3 Gallium Arsenide (GAAS)
    • 6.3.1 Aluminum Gallium Arsenide (ALGAAS)
  • 6.4 Silicon Carbide (SiC)
  • 6.5 Indium Phosphide (INP)
  • 6.6 Silicon Germanium (SIGE)
  • 6.7 Gallium Phosphide (GAP)
    • 6.7.1 Aluminum Gallium Phosphide (ALGAP)
  • 6.8 Others

Chapter 7 Market Estimates & Forecast, By Product, 2021-2032 (USD Billion & Units)

  • 7.1 Key trends
  • 7.2 LED
  • 7.3 Optoelectronics
  • 7.4 RF Devices
    • 7.4.1 RF Power
    • 7.4.2 RF switching
    • 7.4.3 Other RF devices
  • 7.5 Power electronics
    • 7.5.1 Discrete
      • 7.5.1.1 Transistor
        • 7.5.1.1.1 Metal Oxide Field-Effect Transistor (MOSFET)
        • 7.5.1.1.2 High Electron Mobility Transistor (HEMT)
    • 7.5.2 Diode
      • 7.5.2.1 Schottky diode
      • 7.5.2.2 PIN diode
    • 7.5.3 Bare die
    • 7.5.4 Module

Chapter 8 Market Estimates & Forecast, By Application, 2021-2032 (USD Billion & Units)

  • 8.1 Key trends
  • 8.2 General lighting
  • 8.3 Telecommunication
  • 8.4 Military, defense and aerospace
  • 8.5 Automotive
  • 8.6 Power supply
  • 8.7 Datacom
  • 8.8 Consumer display
  • 8.9 Commercial
  • 8.10 Consumer devices
  • 8.11 Others

Chapter 9 Market Estimates & Forecast, By Region, 2021-2032 (USD Billion & Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 UK
    • 9.3.2 Germany
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 Australia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
  • 9.6 MEA
    • 9.6.1 UAE
    • 9.6.2 South Africa
    • 9.6.3 Saudi Arabia

Chapter 10 Company Profiles

  • 10.1 Advanced Wireless Semiconductor Company
  • 10.2 Ams osram ag
  • 10.3 Cree Inc.
  • 10.4 Gan systems
  • 10.5 GaN Systems Inc.
  • 10.6 Infineon technologies ag
  • 10.7 Microsemi Corporation (Microchip Technology Inc.)
  • 10.8 Mitsubishi electric corporation
  • 10.9 Mitsubishi Electric Corporation
  • 10.10 Nichia corporation
  • 10.11 Nxp semiconductors n.v.
  • 10.12 ON Semiconductor Corp. (Semiconductor Components Industries Llc)
  • 10.13 Qorvo, inc.
  • 10.14 Renesas electronics corporation
  • 10.15 Samsung electronics co., ltd.
  • 10.16 Skyworks solutions, inc.
  • 10.17 STMicroelectronics N.V.
  • 10.18 Taiwan Semiconductor Manufacturing Company Ltd.
  • 10.19 Texas Instruments Inc.
  • 10.20 WIN Semiconductors Corp.
  • 10.21 Wolfspeed, inc.