封面
市场调查报告书
商品编码
1844260

汽车超音波焊接设备市场机会、成长动力、产业趋势分析及2025-2034年预测

Automotive Sonic Welding Equipment Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车超音波焊接设备市场价值为 2.398 亿美元,预计将以 5.8% 的复合年增长率成长,到 2034 年达到 4.159 亿美元。

汽车超音波焊接设备市场 - IMG1

随着汽车製造商越来越重视更轻、更坚固、更有效率的组装方法,尤其是在电动车製造和下一代汽车内装领域,市场发展也日益强劲。超音波焊接已被证明对于连接薄金属、热塑性塑胶、母线、能源模组和敏感感测器零件等组件至关重要。随着电动车产量的扩大,这项技术变得更加重要,尤其是在电芯极耳、线束和电池模组连接等应用中。该工艺因其精确度高、低热、非侵入式焊接能力强而备受青睐,能够维持精密材料的完整性。原始设备製造商 (OEM) 正在采用超音波系统来降低生产成本、省去额外的精加工步骤并缩短週期。自动化和数位化整合正在重塑设备格局,机械手臂和超音波头每个週期可执行多次焊接,并由 PLC 系统、IIoT 介面和 SPC 仪表板监控。即时回馈可实现製程一致性和预测性维护。该行业也在探索混合连接方法,将超音波焊接与黏合剂或机械紧固件结合,以处理具有复杂几何形状和强度要求的多材料组件。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 2.398亿美元
预测值 4.159亿美元
复合年增长率 5.8%

2024年,自动化设备领域占据了64%的市场。这些系统广泛应用于大型製造工厂,这些工厂的连续运作、速度和可重复性至关重要。与传送系统和机器人自动化的整合可实现不间断生产和均匀的焊接质量,使其成为亚太地区、北美和欧洲领先原始设备製造商的必备设备。自动化设定对于保持精度、提高产量和支援线上品质控制至关重要。

到2034年,热塑性塑胶市场的复合年增长率将达到5.1%。热塑性塑胶重量轻且易于焊接,广泛应用于保险桿、面板和内装零件。随着混合动力车和电动车的兴起,对能够以最短週期进行超音波连接的热塑性零件的需求日益增长。原始设备製造商 (OEM) 青睐超音波焊接,因为它的精度和效率更高,甚至一些较小的车间也开始转向紧凑型系统,以便在预算有限的项目中实现精简生产。

2024年,美国汽车超音波焊接设备市场规模达7,430万美元。该国受益于先进的生产设施和对高科技製造方法的快速应用。汽车製造商和一级供应商正在大力投资手持式和自动化超音波焊接系统,以支援电动车和内燃机汽车生产线。这些系统对于电池极耳、线路系统和塑胶零件安装等应用至关重要,可提供快速的加工和可靠的接头完整性。随着品质和安全要求的不断提高,人工智慧监控系统、机器人流程整合和可追溯的焊接追踪进一步推动了需求成长,所有这些都有助于提高生产可靠性和合规性。

全球汽车超音波焊接设备市场的主要参与者包括杜肯 (Dukane)、艾默生 (Emerson)、RINCO Ultrasonics、SONOTRONIC、Sonics & Materials、Telsonic、上海晨风、Herrmann Ultrasonics、Ultrasonic Engineering 和 Schunk。汽车超音波焊接设备领域的製造商正在透过扩展其自动化能力并提供符合工业 4.0 标准的系统来增强其市场影响力。 Herrmann Ultrasonics、艾默生和 Telsonic 等公司正在将人工智慧 (AI) 和机器学习 (ML) 融入焊接品质监控,以实现即时回馈和预测性维护。与原始设备製造商 (OEM) 和一级供应商的策略合作伙伴关係正帮助他们根据不断变化的电动车製造需求调整产品开发。研发投资重点是混合连接技术和模组化系统,以实现灵活的工厂布局。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基础估算与计算
    • 基准年计算
    • 市场评估的主要趋势
  • 初步研究和验证
    • 主要来源
  • 预报
  • 研究假设和局限性

第 2 章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的增值
    • 影响价值链的因素
    • 中断
  • 产业衝击力
    • 成长动力
      • 电动车普及率和轻量化材料使用率的提高
      • 自动化製造和工业 4.0 应用的成长
      • 热塑性部件需求不断成长
      • 专注于降低生产成本和提高产量
    • 产业陷阱与挑战
      • 自动化系统的前期资本成本高
      • 需要熟练的操作员和维护
    • 市场机会
      • 电动车电池组装和模组化内装的扩展
      • 改装和售后备件和服务
  • 成长潜力分析
  • 监管格局
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • Pestel分析
  • 技术和创新格局
    • 当前的技术趋势
    • 新兴技术
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物的策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考虑
  • 用例和应用
  • 最佳情况
  • 成本结构与定价分析
    • 设备成本明细
    • 定价策略分析
    • 总拥有成本分析
    • 价格趋势分析
  • 产业差距及解决方案分析
    • 当前市场效率低下
    • 技术差距与创新机会
    • 公司弥补差距的策略
    • 降低成本的策略
  • 市场成熟度与生命週期分析
    • 技术采用曲线
    • 各地区市场饱和度
    • 产品生命週期阶段
    • 创新週期和研发投资趋势
  • 区域製造和采购策略
    • 製造足迹优化
    • 近岸外包/回岸外包趋势
    • 区域成本竞争力
    • 本地内容要求的影响

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 多边环境协定
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估计与预测:按设备,2021 - 2034 年

  • 主要趋势
  • 手持式
  • 自动化
  • 桌上型

第六章:市场估计与预测:依资料,2021 - 2034 年

  • 主要趋势
  • 热塑性塑料
  • 金属
  • 复合材料
  • 橡皮
  • 其他的

第七章:市场估计与预测:依技术分类,2021 - 2034 年

  • 主要趋势
  • 连续超音波焊接
  • 脉衝超音波焊接
  • 超音波点焊
  • 超音波封口

第 8 章:市场估计与预测:按最终用途,2021 - 2034 年

  • 主要趋势
  • 原始设备製造商
  • 售后市场和服务提供商

第九章:市场估计与预测:按地区,2021 - 2034

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧人
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 东南亚
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 多边环境协定
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十章:公司简介

  • 全球参与者
    • Dukane
    • Emerson
    • Herrmann Ultrasonics
    • Schunk
    • Sonics & Materials
    • SONOTRONIC
    • Telsonic
    • Xfurth
  • 区域参与者
    • KLN Ultraschall
    • Kormax System
    • Nippon Avionics
    • Rinco Ultrasonics
    • SEDECO
    • Ultrasonic Engineering
  • 新兴玩家
    • Dizo Global
    • Ever Ultrasonic
    • Hornwell Technology
    • Maxwide Ultrasonic
    • Shanghai Chenfeng
    • Ultra Autosonic
简介目录
Product Code: 14822

The Global Automotive Sonic Welding Equipment Market was valued at USD 239.8 million in 2024 and is estimated to grow at a CAGR of 5.8% to reach USD 415.9 million by 2034.

Automotive Sonic Welding Equipment Market - IMG1

The market is gaining traction as automakers increasingly prioritize lighter, stronger, and more efficient assembly methods especially for electric vehicle manufacturing and next-gen vehicle interiors. Ultrasonic welding is proving essential for joining components such as slim metals, thermoplastics, busbars, energy modules, and sensitive sensor parts. As EV production scales, this technology becomes even more vital, particularly for applications like cell tabs, wiring harnesses, and battery module connections. The process is favored for its precision and ability to deliver low-heat, non-invasive welds that maintain the integrity of delicate materials. OEMs are adopting ultrasonic systems to cut production costs, eliminate extra finishing steps, and accelerate cycle times. Automation and digital integration are reshaping the equipment landscape, with robotic arms and ultrasonic heads executing multiple welds per cycle, monitored by PLC systems, IIoT interfaces, and SPC dashboards. Real-time feedback enables process consistency and predictive maintenance. The industry is also exploring hybrid joining methods, where ultrasonic welding is combined with adhesives or mechanical fasteners to handle multi-material assemblies with complex geometries and strength requirements.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$239.8 Million
Forecast Value$415.9 Million
CAGR5.8%

In 2024, the automated equipment segment held 64% share. These systems are widely deployed across large-scale manufacturing facilities where continuous operation, speed, and repeatability are crucial. Integration with conveyor systems and robotic automation allows for uninterrupted production and uniform weld quality, making them a staple for leading OEMs across APAC, North America, and Europe. Automated setups have become essential for maintaining precision, boosting throughput, and supporting in-line quality control.

The thermoplastics segment will grow at a CAGR of 5.1% through 2034. Lightweight and easy to weld, thermoplastics are heavily used in bumpers, panels, and interior components. With the rise of hybrid and electric vehicles, demand is climbing for thermoplastic parts that can be ultrasonically joined with minimal cycle time. OEMs prefer ultrasonic welding for its accuracy and efficiency, and even smaller workshops are turning to compact systems for streamlined production on budget-conscious projects.

United States Automotive Sonic Welding Equipment Market generated USD 74.3 million in 2024. The country benefits from advanced production facilities and a rapid embrace of high-tech manufacturing methods. Automakers and Tier-1 suppliers are heavily investing in both handheld and automated ultrasonic welding systems to support EV and internal combustion vehicle lines. These systems are essential for applications like battery tabs, wiring systems, and plastic component mounting, delivering fast processing and reliable joint integrity. With rising quality and safety expectations, demand is being further driven by AI-enabled monitoring systems, robotic process integration, and traceable weld tracking-all of which contribute to improving production reliability and compliance.

Key players actively operating in the Global Automotive Sonic Welding Equipment Market include Dukane, Emerson, RINCO Ultrasonics, SONOTRONIC, Sonics & Materials, Telsonic, Shanghai Chenfeng, Herrmann Ultrasonics, Ultrasonic Engineering, and Schunk. Manufacturers in the automotive sonic welding equipment space are strengthening their market presence by expanding their automation capabilities and offering systems compatible with Industry 4.0 standards. Companies like Herrmann Ultrasonics, Emerson, and Telsonic are integrating AI and machine learning into weld quality monitoring, enabling real-time feedback and predictive maintenance. Strategic partnerships with OEMs and Tier-1 suppliers are helping them align product development with evolving EV manufacturing needs. Investments in R&D are focused on hybrid joining technologies and modular systems that allow flexible plant layouts.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Equipment
    • 2.2.3 Material
    • 2.2.4 Technology
    • 2.2.5 End Use
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing EV adoption and lightweight material use
      • 3.2.1.2 Growth of automated manufacturing and Industry 4.0 adoption
      • 3.2.1.3 Rising demand for thermoplastic components
      • 3.2.1.4 Focus on production cost reduction and higher throughput
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High upfront capital cost for automated systems
      • 3.2.2.2 Requirement for skilled operators and maintenance
    • 3.2.3 Market opportunities
      • 3.2.3.1 Expansion in EV battery assembly and modular interiors
      • 3.2.3.2 Retrofit and aftermarket spares & services
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter’s analysis
  • 3.6 Pestel analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Patent analysis
  • 3.9 Sustainability & environmental aspects
    • 3.9.1 Sustainable practices
    • 3.9.2 Waste reduction strategies
    • 3.9.3 Energy efficiency in production
    • 3.9.4 Eco-friendly Initiatives
    • 3.9.5 Carbon footprint considerations
  • 3.10 Use cases and applications
  • 3.11 Best-case scenario
  • 3.12 Cost Structure & Pricing Analysis
    • 3.12.1 Equipment Cost Breakdown
    • 3.12.2 Pricing Strategy Analysis
    • 3.12.3 Total Cost of Ownership Analysis
    • 3.12.4 Price Trend Analysis
  • 3.13 Industry Gaps & Solutions Analysis
    • 3.13.1 Current Market Inefficiencies
    • 3.13.2 Technology Gaps & Innovation Opportunities
    • 3.13.3 Company Strategies to Address Gaps
    • 3.13.4 Cost Reduction Strategies
  • 3.14 Market Maturity & Life Cycle Analysis
    • 3.14.1 Technology adoption curves
    • 3.14.2 Market saturation levels by region
    • 3.14.3 Product life cycle stages
    • 3.14.4 Innovation cycles and R&D investment trends
  • 3.15 Regional Manufacturing & Sourcing Strategies
    • 3.15.1 Manufacturing footprint optimization
    • 3.15.2 Nearshoring/reshoring trends
    • 3.15.3 Regional cost competitiveness
    • 3.15.4 Local content requirements impact

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Equipment, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 Handheld
  • 5.3 Automated
  • 5.4 Bench-Top

Chapter 6 Market Estimates & Forecast, By Material, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 Thermoplastics
  • 6.3 Metals
  • 6.4 Composites
  • 6.5 Rubber
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Continuous Ultrasonic Welding
  • 7.3 Pulsed Ultrasonic Welding
  • 7.4 Ultrasonic Spot Welding
  • 7.5 Ultrasonic Sealing

Chapter 8 Market Estimates & Forecast, By End Use, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 OEMs
  • 8.3 Aftermarket & Service Providers

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Southeast Asia
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 MEA
    • 9.6.1 South Africa
    • 9.6.2 Saudi Arabia
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Dukane
    • 10.1.2 Emerson
    • 10.1.3 Herrmann Ultrasonics
    • 10.1.4 Schunk
    • 10.1.5 Sonics & Materials
    • 10.1.6 SONOTRONIC
    • 10.1.7 Telsonic
    • 10.1.8 Xfurth
  • 10.2 Regional Players
    • 10.2.1 KLN Ultraschall
    • 10.2.2 Kormax System
    • 10.2.3 Nippon Avionics
    • 10.2.4 Rinco Ultrasonics
    • 10.2.5 SEDECO
    • 10.2.6 Ultrasonic Engineering
  • 10.3 Emerging Players
    • 10.3.1 Dizo Global
    • 10.3.2 Ever Ultrasonic
    • 10.3.3 Hornwell Technology
    • 10.3.4 Maxwide Ultrasonic
    • 10.3.5 Shanghai Chenfeng
    • 10.3.6 Ultra Autosonic