封面
市场调查报告书
商品编码
1871095

汽车人工智慧处理器市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Automotive AI Processors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车人工智慧处理器市场价值为 56 亿美元,预计到 2034 年将以 20.5% 的复合年增长率增长至 335 亿美元。

汽车人工智慧处理器市场 - IMG1

由于人工智慧在现代车辆中日益普及,应用于高级驾驶辅助系统 (ADAS)、自动驾驶、车载资讯娱乐系统和预测性维护等领域,市场正经历快速成长。这些人工智慧处理器在保持能源效率和低延迟的同时,还能提供卓越的运算性能,使车辆能够做出对安全性和自动化至关重要的即时决策。随着汽车製造商越来越多地将人工智慧和机器学习技术嵌入车辆,对能够进行大规模资料处理、模型训练和推理的处理器的需求持续增长。主要晶片开发商正致力于开发汽车级软体开发工具包 (SDK)、人工智慧框架和认证项目,以支援原始设备製造商 (OEM) 和一级供应商设计智慧系统。电动车和连网汽车的日益普及进一步加速了对能够处理大量即时感测器和摄影机资料的人工智慧处理器的需求。混合型车载和云端人工智慧架构正逐渐成为标准,尤其是在物流和公共交通等系统优化和安全合规性至关重要的行业。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 56亿美元
预测值 335亿美元
复合年增长率 20.5%

到2024年,图形处理器(GPU)市场占有率预计将达到38%,这主要得益于其无与伦比的平行运算能力,而这对于自动导航、感测器融合和感知任务至关重要。汽车製造商正日益依赖基于GPU的AI处理器来提升深度学习和电脑视觉的效能。 GPU能够同时处理多个资料流,进而加快推理速度,提高模型精度,并缩短下一代汽车系统的上市时间。

到2024年,ADAS(高级驾驶辅助系统)市占率将达到42%。其成长主要源自于乘用车和商用车中安全和自动化功能的日益整合,例如自适应巡航控制、车道维持辅助和碰撞避免技术。车辆安全监管要求的提高以及消费者对半自动驾驶日益增长的兴趣,正在加速推动对ADAS系统的需求。人工智慧处理器作为这些系统的运算核心,负责即时资料解读和决策,进而提升驾驶和乘客的安全。

美国汽车人工智慧处理器市场预计在2024年达到20亿美元。美国强大的技术基础,加上电动车和自动驾驶汽车的快速发展,持续推动巨大的市场需求。对边缘运算、人工智慧开发工具和车用级晶片组的重视,使美国成为该行业的主要创新中心。此外,对安全标准的遵守以及人工智慧驱动的预测性维护和互联车队技术的日益普及,也进一步增强了市场的发展势头。

汽车人工智慧处理器市场的主要参与者包括特斯拉、英伟达、高通、博世、百度、华为、地平线机器人、大陆集团、安波福和Mobileye(英特尔旗下)。这些公司正采取多种策略来巩固其竞争优势。关键企业正大力投资人工智慧驱动的半导体研发,重点在于节能架构、先进的神经处理单元和边缘人工智慧整合。与汽车製造商和一级供应商的合作有助于简化人工智慧在车辆平台上的部署。此外,各公司也正在拓展产品组合,提供可扩展的解决方案,以满足自动驾驶和互联汽车的需求。与软体开发人员和云端服务供应商的策略合作,则实现了人工智慧工具炼和资料分析的无缝整合。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预测模型
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • ADAS和自动驾驶技术的日益普及
      • 互联汽车和电动车的兴起
      • 边缘人工智慧和车载资料处理
      • OEM和半导体合作
    • 产业陷阱与挑战
      • 高昂的开发和整合成本
      • 标准化和互通性有限
    • 市场机会
      • 软体定义车辆(SDV)的出现
      • 扩大亚太地区电动车产能
      • 基于人工智慧的预测性维护和车队管理
      • 开发汽车专用人工智慧工具链
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
    • 技术路线图与演进
    • 技术采纳生命週期分析
  • 价格趋势
    • 按地区
    • 副产品
  • 生产统计
    • 生产中心
    • 消费中心
    • 进出口
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 分销通路和市场进入策略
    • 测试与验证方法(满足客户需求)
    • 功能安全测试(ISO 26262)
    • 网路安全验证(ISO/SAE 21434)
    • 环境测试(aec-q100/q101/q104)
    • 性能基准标准
    • 硬体在环 (HIL) 测试
    • 软体在环(SIL)验证
  • 风险评估与缓解策略
    • 地缘政治风险评估
    • 供应链中断情景
    • 技术过时风险
    • 网路安全威胁分析
    • 多源采购策略
  • 市场进入与扩张策略
    • 新的市场渗透模式
    • 区域扩张路线图
  • 投资优先排序框架
    • 研发投资分配模型
    • 资本支出优化
    • 技术组合管理
    • 投资报酬率评估方法
  • 降低成本和优化机会
    • 加速产品上市时间策略
    • 平行工程方法
    • 快速原型製作方法
    • 资格认证时间表优化
    • 快速认证流程

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • MEA
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金
  • 策略倡议分析
  • 供应商选择标准
  • 供应链伙伴关係
  • 技术授权协议

第五章:市场估算与预测:依处理器划分,2021-2034年

  • 主要趋势
  • 图形处理器(GPU)
  • 中央处理器(CPU)
  • 专用积体电路(ASIC)
  • 现场可程式闸阵列(FPGA)
  • 系统单晶片(SoC)

第六章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 高级驾驶辅助系统(ADAS)
  • 自动驾驶
  • 预测性维护
  • 车载资讯娱乐系统
  • 导航与远端资讯处理

第七章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • SUV
    • 掀背车
    • 轿车
  • 商用车辆
    • 轻型商用车 (LCV)
    • MCV(中型商用车)
    • 重型商用车 (HCV)

第八章:市场估算与预测:依部署层级划分,2021-2034年

  • 主要趋势
  • 一级(驾驶辅助)
  • 二级(部分自动化)
  • 3级(条件自动化)
  • 4级(高度自动化)
  • 5级(全自动)

第九章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧
    • 俄罗斯
    • 波兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 越南
    • 泰国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十章:公司简介

  • Global companies
    • Advanced Micro Devices (AMD)
    • Analog Devices
    • Aptiv
    • Arm
    • Baidu
    • Broadcom
    • Continental
    • Huawei Technologies
    • Mobileye (Intel Corporation)
    • NVIDIA
    • NXP Semiconductors
    • Qualcomm Technologies
    • Robert Bosch
    • Tesla
  • Regional companies
    • Ambarella
    • Horizon Robotics
    • Infineon Technologies
    • MediaTek
    • Samsung Semiconductor
    • SK Hynix
    • STMicroelectronics
  • Emerging companies
    • Black Sesame Technologies
    • EdgeCortix
    • Hailo Technologies
    • Horizon Robotics
    • SiMa.ai
简介目录
Product Code: 14965

The Global Automotive AI Processors Market was valued at USD 5.6 Billion in 2024 and is estimated to grow at a CAGR of 20.5% to reach USD 33.5 Billion by 2034.

Automotive AI Processors Market - IMG1

The market is witnessing rapid growth due to the increasing integration of artificial intelligence across modern vehicles for advanced driver-assistance systems (ADAS), autonomous driving, in-vehicle infotainment, and predictive maintenance. These AI processors deliver exceptional computing performance while maintaining power efficiency and low latency, enabling vehicles to make real-time decisions critical to safety and automation. As automotive manufacturers increasingly embed AI and machine learning technologies, the demand for processors capable of large-scale data processing, model training, and inferencing continues to rise. Major chip developers are focusing on creating automotive-grade software development kits (SDKs), AI frameworks, and certification programs that support OEMs and Tier-1 suppliers in designing intelligent systems. The growing adoption of electric and connected vehicles has further accelerated the need for AI processors capable of handling vast amounts of real-time sensor and camera data. Hybrid on-vehicle and cloud-based AI architectures are becoming standard, especially in sectors like logistics and public transport, where system optimization and safety compliance are paramount.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$5.6 Billion
Forecast Value$33.5 Billion
CAGR20.5%

The graphics processing unit (GPU) segment held a 38% share in 2024, driven by its unmatched parallel computing capabilities essential for autonomous navigation, sensor fusion, and perception tasks. Automakers are increasingly relying on GPU-based AI processors to enhance deep learning and computer vision performance. The ability of GPUs to process multiple data streams simultaneously enables faster inference, improved model accuracy, and reduced time-to-market for next-generation vehicle systems.

The ADAS segment held a 42% share in 2024. Its growth stems from expanding integration of safety and automation features such as adaptive cruise control, lane-keeping assistance, and collision avoidance technologies in both passenger and commercial vehicles. Regulatory requirements for vehicle safety and the growing consumer interest in semi-autonomous driving are accelerating demand for ADAS systems. AI processors serve as the computational core for these systems, managing real-time data interpretation and decision-making to improve driver and passenger safety.

U.S. Automotive AI Processors Market reached USD 2 Billion in 2024. The country's strong technological base, coupled with rapid advancements in electric and autonomous vehicles, continues to drive significant demand. Focus on edge computing, AI development tools, and automotive-grade chipsets has positioned the U.S. as a major innovation hub in this industry. Compliance with safety standards and growing integration of AI-driven predictive maintenance and connected fleet technologies further strengthen the market's momentum.

Prominent companies operating in the Automotive AI Processors Market include Tesla, NVIDIA, Qualcomm, Robert Bosch, Baidu, Huawei Technologies, Horizon Robotics, Continental, Aptiv, and Mobileye (Intel). Companies in the Automotive AI Processors Market are employing multiple strategies to strengthen their competitive positioning. Key players are heavily investing in AI-driven semiconductor R&D, focusing on energy-efficient architectures, advanced neural processing units, and edge AI integration. Partnerships with automakers and Tier-1 suppliers help streamline AI deployment across vehicle platforms. Firms are also expanding their product portfolios with scalable solutions tailored for both autonomous and connected vehicles. Strategic collaborations with software developers and cloud providers enable seamless integration of AI toolchains and data analytics.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Processor
    • 2.2.3 Application
    • 2.2.4 Vehicle
    • 2.2.5 Deployment level
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing adoption of ADAS and autonomous driving
      • 3.2.1.2 Rise in connected and electric vehicles
      • 3.2.1.3 Edge AI and on-vehicle data processing
      • 3.2.1.4 OEM and semiconductor collaboration
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High development and integration cost
      • 3.2.2.2 Limited standardization and interoperability
    • 3.2.3 Market opportunities
      • 3.2.3.1 Emergence of software-defined vehicles (SDVs)
      • 3.2.3.2 Expanding EV production In Asia-Pacific
      • 3.2.3.3 AI-based predictive maintenance & fleet management
      • 3.2.3.4 Development of automotive-specific AI toolchains
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
    • 3.7.3 Technology roadmaps & evolution
    • 3.7.4 Technology adoption lifecycle analysis
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Production statistics
    • 3.9.1 Production hubs
    • 3.9.2 Consumption hubs
    • 3.9.3 Export and import
  • 3.10 Cost breakdown analysis
  • 3.11 Patent analysis
  • 3.12 Sustainability and environmental aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
    • 3.12.5 Carbon footprint considerations
  • 3.13 Distribution channels & go-to-market strategies
    • 3.13.1 Testing & validation methodologies (client need addressed)
    • 3.13.2 Functional safety testing (ISO 26262)
    • 3.13.3 Cybersecurity validation (ISO/SAE 21434)
    • 3.13.4 Environmental testing (aec-q100/q101/q104)
    • 3.13.5 Performance benchmarking standards
    • 3.13.6 Hardware-in-loop (HIL) testing
    • 3.13.7 Software-in-Loop (SIL) Validation
  • 3.14 Risk assessment & mitigation strategies
    • 3.14.1 Geopolitical risk assessment
    • 3.14.2 Supply chain disruption scenarios
    • 3.14.3 Technology obsolescence risk
    • 3.14.4 Cybersecurity threat analysis
    • 3.14.5 Multi-sourcing strategies
  • 3.15 Market entry & expansion strategies
    • 3.15.1 New market penetration models
    • 3.15.2 Regional expansion roadmaps
  • 3.16 Investment prioritization frameworks
    • 3.16.1 R&D investment allocation models
    • 3.16.2 Capital expenditure optimization
    • 3.16.3 Technology portfolio management
    • 3.16.4 ROI assessment methodologies
  • 3.17 Cost reduction & optimization opportunities
    • 3.17.1 Time-to-market acceleration strategies
    • 3.17.2 Concurrent engineering approaches
    • 3.17.3 Rapid prototyping methodologies
    • 3.17.4 Qualification timeline optimization
    • 3.17.5 Fast-track certification processes

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding
  • 4.7 Strategic initiatives analysis
  • 4.8 Vendor selection criteria
  • 4.9 Supply chain partnerships
  • 4.10 Technology licensing agreements

Chapter 5 Market Estimates & Forecast, By Processor, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 Graphics processing unit (GPU)
  • 5.3 Central processing unit (CPU)
  • 5.4 Application-specific integrated circuit (ASIC)
  • 5.5 Field programmable gate array (FPGA)
  • 5.6 System on chip (SoC)

Chapter 6 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 Advanced driver-assistance systems (ADAS)
  • 6.3 Autonomous driving
  • 6.4 Predictive maintenance
  • 6.5 In-vehicle infotainment
  • 6.6 Navigation & telematics

Chapter 7 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Passenger cars
    • 7.2.1 SUV
    • 7.2.2 Hatchback
    • 7.2.3 Sedan
  • 7.3 Commercial vehicles
    • 7.3.1 LCV (Light commercial vehicle)
    • 7.3.2 MCV (Medium commercial vehicle)
    • 7.3.3 HCV (Heavy commercial vehicle)

Chapter 8 Market Estimates & Forecast, By Deployment level, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 Level 1 (Driver assistance)
  • 8.3 Level 2 (Partial automation)
  • 8.4 Level 3 (Conditional automation)
  • 8.5 Level 4 (High automation)
  • 8.6 Level 5 (Full automation)

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
    • 9.3.8 Poland
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 South Korea
    • 9.4.5 ANZ
    • 9.4.6 Vietnam
    • 9.4.7 Thailand
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 MEA
    • 9.6.1 South Africa
    • 9.6.2 Saudi Arabia
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global companies
    • 10.1.1 Advanced Micro Devices (AMD)
    • 10.1.2 Analog Devices
    • 10.1.3 Aptiv
    • 10.1.4 Arm
    • 10.1.5 Baidu
    • 10.1.6 Broadcom
    • 10.1.7 Continental
    • 10.1.8 Huawei Technologies
    • 10.1.9 Mobileye (Intel Corporation)
    • 10.1.10 NVIDIA
    • 10.1.11 NXP Semiconductors
    • 10.1.12 Qualcomm Technologies
    • 10.1.13 Robert Bosch
    • 10.1.14 Tesla
  • 10.2 Regional companies
    • 10.2.1 Ambarella
    • 10.2.2 Horizon Robotics
    • 10.2.3 Infineon Technologies
    • 10.2.4 MediaTek
    • 10.2.5 Samsung Semiconductor
    • 10.2.6 SK Hynix
    • 10.2.7 STMicroelectronics
  • 10.3 Emerging companies
    • 10.3.1 Black Sesame Technologies
    • 10.3.2 EdgeCortix
    • 10.3.3 Hailo Technologies
    • 10.3.4 Horizon Robotics
    • 10.3.5 SiMa.ai