![]() |
市场调查报告书
商品编码
1876578
汽车神经处理单元(NPU)市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)Automotive Neural Processing Unit (NPU) Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
||||||
2024 年全球汽车神经处理单元 (NPU) 市场价值为 22 亿美元,预计到 2034 年将以 21.5% 的复合年增长率增长至 171 亿美元。

神经网路处理单元 (NPU) 在车辆中的广泛应用正在革新智慧出行,使汽车能够即时处理海量感测器资料、解读周围环境并快速执行数据驱动的决策。这些专用晶片为高级驾驶辅助系统 (ADAS)、自动驾驶汽车和车内智慧系统等深度学习应用提供强大支持,显着提升安全性、能源优化和驾驶舒适性。汽车製造商和一级供应商正在设计支援预测分析、低延迟资料融合和即时车辆决策的下一代运算架构。持续向电气化和互联转型进一步加速了 NPU 在预测性能量控制、进阶电池管理和车网互动协调方面的应用。这些处理器还能透过学习环境条件和驾驶行为,改善电动车的路线最佳化和续航里程预测。 NPU 与边缘运算和云端运算的整合实现了空中下载 (OTA) 更新、智慧诊断和远端优化,从而加强了永续发展。 COVID-19 疫情也加速了汽车价值链的数位转型,製造商越来越依赖人工智慧、模拟和远端诊断来确保生产的韧性,并开发具有边缘人工智慧的自癒汽车系统。
| 市场范围 | |
|---|---|
| 起始年份 | 2024 |
| 预测年份 | 2025-2034 |
| 起始值 | 22亿美元 |
| 预测值 | 171亿美元 |
| 复合年增长率 | 21.5% |
2024年,硬体部分占据了68%的市场份额,预计到2034年将以20.5%的复合年增长率成长。硬体持续主导市场,因为神经网路处理器(NPU)是基于人工智慧的车辆运算的核心。 NPU整合在先进的处理器和系统级晶片(SoC)中,能够实现高速、低延迟的平行资料处理,这对于高级驾驶辅助系统(ADAS)、自动驾驶和资讯娱乐系统至关重要。汽车製造商正大力投资硬体创新,以支援车辆生态系统内高效的即时决策,从而最大限度地减少对云端连接的依赖,并提高边缘运算效率。
边缘处理领域在2024年占据了69%的市场份额,预计从2025年到2034年将以20.6%的复合年增长率成长。基于边缘的AI处理正日益受到重视,因为它允许车辆直接在车载端处理海量资料,从而减少延迟,并确保在驾驶员监控、物体检测和导航等关键安全应用中更快地做出决策。透过减少对外部网路的依赖,边缘NPU在各种连接条件下都能提供更高的性能、可靠性和响应速度,从而巩固了其作为智慧车辆设计关键组件的地位。
预计到2024年,中国汽车神经网路处理器(NPU)市场将占据37%的市场份额,市场规模将达到4.239亿美元。中国在智慧和自动驾驶汽车技术领域的快速发展使其成为重要的成长中心。政府的支持性措施和国家政策鼓励了国内半导体创新和人工智慧硬体的本土化。中国领先的科技公司正在设计用于即时感测器融合、感知和自主控制的车规级NPU,进一步增强了区域竞争力,并降低了汽车人工智慧运算领域对外国技术的依赖。
全球汽车神经处理器 (NPU) 市场的主要参与者包括英伟达 (NVIDIA)、特斯拉 (Tesla)、AMD、瑞萨电子 (Renesas)、英特尔 (Intel,旗下品牌 Mobileye)、恩智浦半导体 (NXP)、海洛 (Hailo)、亚马逊 (Amazon)、IBM 和高通公司 (QuIBcomm)。为了巩固自身地位,汽车神经处理器产业的公司正致力于开发高性能、高能源效率的晶片组,以支援下一代自动驾驶和连网汽车应用。许多公司正与领先的汽车製造商和一级供应商建立合作关係,将他们的 NPU 整合到车辆控制系统和高级驾驶辅助系统 (ADAS) 平台中。研发投资正集中于推进边缘人工智慧运算、优化深度学习演算法以及增强晶片的可扩展性,以应对复杂的汽车工作负载。此外,半导体製造商正在扩大产能,并专注于软硬体协同设计,以确保其产品能够灵活部署到电动车和自动驾驶车队。
The Global Automotive Neural Processing Unit (NPU) Market was valued at USD 2.2 billion in 2024 and is estimated to grow at a CAGR of 21.5% to reach USD 17.1 billion by 2034.

The expanding use of NPUs in vehicles is revolutionizing intelligent mobility by enabling cars to process vast sensor data in real time, interpret their surroundings, and execute rapid, data-driven decisions. These specialized chips power deep learning applications for advanced driver-assistance systems (ADAS), autonomous vehicles, and in-cabin intelligence, significantly enhancing safety, energy optimization, and driving comfort. Automotive manufacturers and Tier-1 suppliers are designing next-generation computing architectures that support predictive analytics, low-latency data fusion, and real-time vehicle decision-making. The ongoing shift toward electrification and connected mobility has further accelerated NPU adoption for predictive energy control, advanced battery management, and vehicle-to-grid coordination. These processors also improve route optimization and range prediction in electric vehicles by learning from environmental conditions and driver behavior. Integration of NPUs with edge and cloud computing enables over-the-air (OTA) updates, intelligent diagnostics, and remote optimization, strengthening sustainability efforts. The COVID-19 pandemic also sped up digital transformation in the automotive value chain, as manufacturers increasingly relied on AI, simulation, and remote diagnostics to ensure production resilience and develop self-healing automotive systems with AI at the edge.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $2.2 Billion |
| Forecast Value | $17.1 Billion |
| CAGR | 21.5% |
The hardware segment held a 68% share in 2024 and is projected to grow at a CAGR of 20.5% through 2034. Hardware continues to dominate the market because NPUs are at the heart of AI-based vehicle computing. Integrated within advanced processors and SoCs, they enable high-speed, low-latency, parallel data processing essential for ADAS, autonomous driving, and infotainment systems. Automakers are heavily investing in hardware innovation to support efficient, real-time decision-making directly within the vehicle ecosystem, minimizing reliance on cloud connectivity and improving processing efficiency at the edge.
The edge processing segment held a 69% share in 2024 and is estimated to grow at a CAGR of 20.6% from 2025 to 2034. Edge-based AI processing is gaining prominence because it allows vehicles to process large data volumes directly on board, reducing delays and ensuring faster decision-making in critical safety applications such as driver monitoring, object detection, and navigation. By reducing dependence on external networks, edge NPUs deliver improved performance, reliability, and responsiveness under varying connectivity conditions, reinforcing their role as a vital component in intelligent vehicle design.
China Automotive Neural Processing Unit (NPU) Market held a 37% share and generated USD 423.9 million in 2024. The country's rapid progress in intelligent and self-driving vehicle technologies has positioned it as a major growth hub. Supportive government initiatives and national policies have encouraged domestic semiconductor innovation and AI hardware localization. Leading Chinese technology firms are designing automotive-grade NPUs for real-time sensor fusion, perception, and autonomous control, further strengthening regional competitiveness and reducing foreign dependency in automotive AI computing.
Key players operating in the Global Automotive Neural Processing Unit (NPU) Market include NVIDIA, Tesla, AMD, Renesas, Intel (Mobileye), NXP, Hailo, Amazon, IBM, and Qualcomm. To strengthen their position, companies in the automotive neural processing unit industry are focusing on developing high-performance, energy-efficient chipsets that support next-generation autonomous and connected vehicle applications. Many firms are forming partnerships with leading automakers and Tier-1 suppliers to integrate their NPUs into vehicle control systems and ADAS platforms. R&D investments are being directed toward advancing edge AI computing, optimizing deep learning algorithms, and enhancing chip scalability for complex automotive workloads. Moreover, semiconductor manufacturers are expanding production capabilities and focusing on software-hardware co-design to ensure flexible deployment across EVs and autonomous fleets.