封面
市场调查报告书
商品编码
1889228

汽车人工智慧诊断市场预测至2032年:按组件、车辆类型、部署、技术、应用、最终用户和地区分類的全球分析

Automotive AI Diagnostics Market Forecasts to 2032 - Global Analysis By Component (Diagnostic Software, Diagnostic Equipment and Services), Vehicle Type, Deployment, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球汽车人工智慧诊断市场规模将达到 69 亿美元,到 2032 年将达到 830 亿美元,预测期内复合年增长率将达到 42.8%。

汽车人工智慧诊断是指应用人工智慧技术来监测、分析和预测车辆性能和健康状况。这些系统利用机器学习演算法、感测器数据和高级分析技术来检测故障、评估零件状况,并提供车辆运作的即时资讯。透过在潜在问题变得严重之前识别它们,人工智慧诊断可以提高安全性、降低维护成本并提升整体效率。这对于配备复杂电子系统、自动驾驶功能和互联平台的现代车辆尤其重要,它能够确保预防性维护,并为製造商和消费者带来最佳化的驾驶体验。

自动驾驶汽车的进展

自动驾驶技术的进步正以不可阻挡的速度推动汽车人工智慧诊断市场的发展。随着车辆配备更多感测器、决策能力和先进电子设备,对智慧诊断系统的需求也日益增长。人工智慧工具将成为安全的无声守护者,持续监控系统健康状况,并在故障发生前进行预测。由于自动驾驶技术完全依赖完美无瑕的性能,製造商正在采用人工智慧诊断技术来最大限度地降低风险、提高可靠性,并确保自动驾驶行驶更加平稳、安全和可靠。

高昂的实施成本

高昂的实施成本仍然是汽车人工智慧诊断市场的主要限制因素。部署先进的人工智慧系统需要在硬体、软体和专业人员方面进行大量投资,这使得中小型製造商和车队营运商难以采用。感测器、云端平台和机器学习模型的整合增加了成本,而持续的维护进一步推高了营运成本。这些财务障碍减缓了科技的普及速度,并限制了其可及性,尤其是在发展中地区。

车辆复杂性日益增加

随着现代车辆的复杂性日益增加,感测器、ECU、连接层和自动驾驶功能也随之增多,人工智慧诊断的潜力也随之大幅提升。传统的诊断方法已无法应对现代车辆中海量资料的涌入。人工智慧应运而生,成为至关重要的解读工具,能够将纷繁复杂的数据转化为清晰明了的资讯。製造商越来越依赖预测性洞察来管理复杂的系统、减少停机时间并预防故障。这种日益增长的复杂性正推动人工智慧诊断从「可选」走向「必备」。

整合挑战

整合挑战威胁着市场发展势头。旧有系统、多样化的车辆架构和碎片化的标准使得无缝部署举步维艰。汽车製造商难以将人工智慧平台与现有电子设备集成,导致相容性问题和交付延迟。资料隐私担忧、网路安全风险以及不一致的通讯协定进一步加剧了这一困境。车队和原始设备製造商 (OEM) 常常面临漫长的部署週期和系统适配障碍。缺乏统一的框架,人工智慧诊断无法发挥其真正的潜力,由此产生的差距会减缓其普及速度,并令早期采用者感到沮丧。

新冠疫情的影响:

新冠疫情既为汽车人工智慧诊断带来了阻碍,也使其发展更加紧迫。供应链中断导致生产延迟,技术升级放缓,尤其是对硬体依赖型解决方案而言。然而,疫情也加速了数位转型,推动了汽车製造商采用远端监控、预测性维护和人工智慧驱动的侦测工具,以减少人际接触。随着消费者偏好转向更安全、更可靠的车辆,诊断技术已成为疫情时代策略的核心。

预计在预测期内,深度学习(DL)细分市场将占据最大的市场份额。

预计在预测期内,深度学习 (DL) 领域将占据最大的市场份额,因为它在故障检测、模式识别和预测分析方面拥有无与伦比的精确度。深度学习模型能够利用现代车辆产生的大量资料集,并以远超人类的速度处理感测器资料流,同时还能像人类一样进行解读。这使其成为诊断细微电气问题和辅助自动驾驶安全层的理想选择。汽车製造商高度重视深度学习能够随着车辆行驶里程的增加而不断学习和改进的能力。其精准性已使其成为先进诊断技术的基础。

预计在预测期内,车队营运商细分市场将实现最高的复合年增长率。

由于车队营运商高度依赖人工智慧诊断来减少停机时间、控制维修成本并延长车辆使用寿命,预计在预测期内,车队营运商细分市场将实现最高成长率。大规模的车队会产生大量数据,因此预测性洞察具有巨大的价值。人工智慧可以帮助营运商智慧地规划维护、预防运作中故障并优化资产利用率。随着物流、共乘、配送网路和租赁公司规模的扩大,它们对即时诊断平台的投资也不断增加。效率带来利润,而人工智慧则是保障车辆行驶安全每时每刻的工具。

占比最大的地区:

由于智慧运输解决方案的快速普及和联网汽车需求的蓬勃发展,亚太地区预计将在预测期内占据最大的市场份额。中国、日本和韩国等国家正竞相推出自动驾驶试点计画、广泛普及电动车,并推广智慧型运输系统(ITS),而这些都需要先进的诊断技术。政府对汽车创新的支持进一步推动了这一发展势头。凭藉精通技术的消费者和实力雄厚的汽车製造商,该地区自然有望占据人工智慧诊断应用的大部分份额。

年复合成长率最高的地区:

在预测期内,北美预计将实现最高的复合年增长率,这得益于其强大的AI开发者、自动驾驶公司、汽车创新者和数据分析先驱者的生态系统。该地区对联网汽车和远距自动驾驶的大力投入,正推动对预测性诊断系统的强劲需求。以安全为中心的法规,加上车队营运商的高采用率,正在加速这一趋势。硅谷在人工智慧领域的领先地位与底特律强大的製造业实力相结合,使北美成为面向未来的诊断技术成长最快的中心。

免费客製化服务:

购买此报告的客户将获得以下免费自订选项之一:

  • 公司概况
    • 对其他市场参与者(最多 3 家公司)进行全面分析
    • 主要参与者(最多3家公司)的SWOT分析
  • 区域细分
    • 根据客户要求,对主要国家的市场规模和复合年增长率进行估算和预测(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要参与者的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球汽车人工智慧诊断市场(按组件划分)

  • 诊断软体
  • 诊断设备
  • 服务

6. 全球汽车人工智慧诊断市场(按车辆类型划分)

  • 搭乘用车
  • 混合动力汽车
  • 商用车辆
  • 电动车(EV)

7. 全球汽车人工智慧诊断市场(以部署方式划分)

  • 本地部署
  • 云端基础的

8. 全球汽车人工智慧诊断市场(按技术划分)

  • 机器学习(ML)
  • 电脑视觉
  • 深度学习(DL)
  • 自然语言处理(NLP)

9. 全球汽车人工智慧诊断市场(按应用划分)

  • 车辆健康监测
  • 车载诊断系统(OBD)
  • 预测性维护
  • 远距离诊断
  • ADAS(进阶驾驶辅助系统)
  • 安全与合规

第十章 全球汽车人工智慧诊断市场(按最终用户划分)

  • 汽车製造商(OEM)
  • 研究所
  • 售后服务服务供应商
  • 车队营运商

第十一章 全球汽车人工智慧诊断市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十三章:企业概况

  • Robert Bosch GmbH
  • Continental AG
  • Aptiv PLC
  • DENSO Corporation
  • NVIDIA Corporation
  • ZF Friedrichshafen AG
  • Magna International Inc.
  • Valeo SA
  • AVL List GmbH
  • Vector Informatik GmbH
  • Autel Intelligent Technology Corp., Ltd.
  • TEXA SpA
  • Snap-on Incorporated
  • Infineon Technologies AG
  • BorgWarner Inc.
Product Code: SMRC32688

According to Stratistics MRC, the Global Automotive AI Diagnostics Market is accounted for $6.9 billion in 2025 and is expected to reach $83.0 billion by 2032 growing at a CAGR of 42.8% during the forecast period. Automotive AI Diagnostics refers to the application of artificial intelligence technologies in monitoring, analyzing, and predicting the performance and health of vehicles. These systems leverage machine learning algorithms, sensor data, and advanced analytics to detect faults, assess component conditions, and provide real-time insights into vehicle operations. By identifying potential issues before they escalate, AI diagnostics enhance safety, reduce maintenance costs, and improve overall efficiency. They are particularly vital in modern vehicles equipped with complex electronic systems, autonomous driving features, and connected platforms, ensuring proactive maintenance and optimized driving experiences for both manufacturers and consumers.

Market Dynamics:

Driver:

Advancements in Autonomous Vehicles

Advancements in autonomous driving are pushing the Automotive AI Diagnostics market forward with unstoppable force. As vehicles gain more sensors, decision-making capabilities, and electronic sophistication, the need for intelligent diagnostic systems grows. AI tools become the silent guardians of safety, constantly reading system health and predicting failures before they strike. With self-driving tech depending entirely on flawless performance, manufacturers are embracing AI diagnostics to minimize risks, enhance reliability, and ensure every autonomous mile is smoother, safer, and more dependable.

Restraint:

High Implementation Costs

High implementation costs remain a significant restraint in the automotive AI diagnostics market. Deploying advanced AI systems requires substantial investment in hardware, software, and skilled personnel, making adoption challenging for smaller manufacturers and fleet operators. The integration of sensors, cloud platforms, and machine learning models adds to expenses, while ongoing maintenance further increases operational costs. These financial barriers slow widespread adoption, particularly in developing regions, limiting accessibility.

Opportunity:

Growing Vehicle Complexity

As modern vehicles become more complex-packed with sensors, ECUs, connectivity layers, and autonomous features-the opportunity for AI diagnostics expands dramatically. Traditional diagnostic methods can't keep up with the sheer volume of data flowing through today's cars. AI steps in as the necessary interpreter, turning chaos into clarity. Manufacturers are increasingly relying on predictive insights to manage intricate systems, reduce downtime, and prevent breakdowns. Rising complexity becomes the rising tide that lifts AI diagnostics into essential, not optional, territory.

Threat:

Integration Challenges

Integration challenges threaten market momentum as legacy systems, diverse vehicle architectures, and fragmented standards make seamless adoption difficult. Automakers struggle to fuse AI platforms with existing electronics, causing compatibility issues and delays. Data privacy concerns, cybersecurity risks, and inconsistent communication protocols only complicate matters further. Fleet operators and OEMs often face long onboarding periods and system calibration hurdles. Without unified frameworks, AI diagnostics can't unlock their full power, leaving gaps that slow deployment and frustrate early adopters.

Covid-19 Impact:

Covid-19 brought both setbacks and renewed urgency to automotive AI diagnostics. Supply chain disruptions delayed production and slowed technological upgrades, particularly for hardware-dependent solutions. Yet the pandemic accelerated digital transformation, pushing OEMs to adopt remote monitoring, predictive maintenance, and AI-driven inspection tools to reduce physical contact. As consumer preference shifted toward safer, more reliable vehicles, diagnostic technologies became central to post-pandemic strategies.

The deep learning (DL) segment is expected to be the largest during the forecast period

The deep learning (DL) segment is expected to account for the largest market share during the forecast period, because it delivers unmatched accuracy in fault detection, pattern recognition, and predictive analytics. DL models thrive on massive datasets generated by modern vehicles, interpreting sensor streams with near-human intuition but far greater speed. This makes them ideal for diagnosing subtle electrical issues and supporting autonomous driving safety layers. Automakers favor DL for its ability to continuously improve, learning from every mile driven. Its precision cements it as the backbone of advanced diagnostics.

The fleet operators segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the fleet operators segment is predicted to witness the highest growth rate, as they rely heavily on AI diagnostics to reduce downtime, trim repair costs, and extend vehicle lifespan. With large fleets generating enormous data volumes, predictive insights become invaluable. AI helps operators schedule maintenance intelligently, prevent breakdowns during operations, and optimize asset utilization. As logistics, ride-hailing, delivery networks, and rental companies scale, they increasingly invest in real-time diagnostic platforms. Efficiency becomes profit, and AI becomes the tool that preserves every hour on the road.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rapid adoption of smart mobility solutions, and booming demand for connected vehicles. Countries like China, Japan, and South Korea are racing ahead with autonomous driving pilots, EV expansion, and intelligent transportation systems-all of which require sophisticated diagnostics. Government support for automotive innovation amplifies this momentum. With tech-savvy consumers and strong OEM presence, the region naturally takes the lion's share of AI diagnostic deployments.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to its strong ecosystem of AI developers, autonomous driving firms, automotive innovators, and data-analytics pioneers. The region's push toward connected vehicles and long-haul automation fuels high demand for predictive diagnostic systems. Regulatory emphasis on safety, combined with high adoption among fleet operators, accelerates deployment. With Silicon Valley's AI leadership and Detroit's manufacturing strength converging, North America becomes the hotbed where future-ready diagnostic technologies scale quickest.

Key players in the market

Some of the key players in Automotive AI Diagnostics Market include Robert Bosch GmbH, Continental AG, Aptiv PLC, DENSO Corporation, NVIDIA Corporation, ZF Friedrichshafen AG, Magna International Inc., Valeo SA, AVL List GmbH, Vector Informatik GmbH, Autel Intelligent Technology Corp., Ltd., TEXA S.p.A., Snap-on Incorporated, Infineon Technologies AG, and BorgWarner Inc.

Key Developments:

In June 2025, Continental has signed an agreement to sell its drum-brake production and R&D facility in Cairo Montenotte, Italy including around 400 employees to Mutares, allowing Continental to refocus on core technologies.

In January 2025, Aurora, Continental, and NVIDIA have teamed up to deploy autonomous trucks at scale, combining Aurora's self-driving software, Continental's vehicle systems, and NVIDIA's hardware. Their collaboration targets commercial freight transport with high safety, efficiency, and advanced AI-based driving.

Components Covered:

  • Diagnostic Software
  • Diagnostic Equipment
  • Services

Vehicle Types Covered:

  • Passenger Cars
  • Hybrid Vehicles
  • Commercial Vehicles
  • Electric Vehicles (EVs)

Deployments Covered:

  • On-Premises
  • Cloud-Based

Technologies Covered:

  • Machine Learning (ML)
  • Computer Vision
  • Deep Learning (DL)
  • Natural Language Processing (NLP)

Applications Covered:

  • Vehicle Health Monitoring
  • Onboard Diagnostics (OBD)
  • Predictive Maintenance
  • Remote Diagnostics
  • Advanced Driver Assistance Systems (ADAS)
  • Safety & Compliance

End Users Covered:

  • Original Equipment Manufacturers (OEMs)
  • Research Institutions
  • Aftermarket Service Providers
  • Fleet Operators

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive AI Diagnostics Market, By Component

  • 5.1 Introduction
  • 5.2 Diagnostic Software
  • 5.3 Diagnostic Equipment
  • 5.4 Services

6 Global Automotive AI Diagnostics Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Cars
  • 6.3 Hybrid Vehicles
  • 6.4 Commercial Vehicles
  • 6.5 Electric Vehicles (EVs)

7 Global Automotive AI Diagnostics Market, By Deployment

  • 7.1 Introduction
  • 7.2 On-Premises
  • 7.3 Cloud-Based

8 Global Automotive AI Diagnostics Market, By Technology

  • 8.1 Introduction
  • 8.2 Machine Learning (ML)
  • 8.3 Computer Vision
  • 8.4 Deep Learning (DL)
  • 8.5 Natural Language Processing (NLP)

9 Global Automotive AI Diagnostics Market, By Application

  • 9.1 Introduction
  • 9.2 Vehicle Health Monitoring
  • 9.3 Onboard Diagnostics (OBD)
  • 9.4 Predictive Maintenance
  • 9.5 Remote Diagnostics
  • 9.6 Advanced Driver Assistance Systems (ADAS)
  • 9.7 Safety & Compliance

10 Global Automotive AI Diagnostics Market, By End User

  • 10.1 Introduction
  • 10.2 Original Equipment Manufacturers (OEMs)
  • 10.3 Research Institutions
  • 10.4 Aftermarket Service Providers
  • 10.5 Fleet Operators

11 Global Automotive AI Diagnostics Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Robert Bosch GmbH
  • 13.2 Continental AG
  • 13.3 Aptiv PLC
  • 13.4 DENSO Corporation
  • 13.5 NVIDIA Corporation
  • 13.6 ZF Friedrichshafen AG
  • 13.7 Magna International Inc.
  • 13.8 Valeo SA
  • 13.9 AVL List GmbH
  • 13.10 Vector Informatik GmbH
  • 13.11 Autel Intelligent Technology Corp., Ltd.
  • 13.12 TEXA S.p.A.
  • 13.13 Snap-on Incorporated
  • 13.14 Infineon Technologies AG
  • 13.15 BorgWarner Inc.

List of Tables

  • Table 1 Global Automotive AI Diagnostics Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Automotive AI Diagnostics Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Automotive AI Diagnostics Market Outlook, By Diagnostic Software (2024-2032) ($MN)
  • Table 4 Global Automotive AI Diagnostics Market Outlook, By Diagnostic Equipment (2024-2032) ($MN)
  • Table 5 Global Automotive AI Diagnostics Market Outlook, By Services (2024-2032) ($MN)
  • Table 6 Global Automotive AI Diagnostics Market Outlook, By Vehicle Type (2024-2032) ($MN)
  • Table 7 Global Automotive AI Diagnostics Market Outlook, By Passenger Cars (2024-2032) ($MN)
  • Table 8 Global Automotive AI Diagnostics Market Outlook, By Hybrid Vehicles (2024-2032) ($MN)
  • Table 9 Global Automotive AI Diagnostics Market Outlook, By Commercial Vehicles (2024-2032) ($MN)
  • Table 10 Global Automotive AI Diagnostics Market Outlook, By Electric Vehicles (EVs) (2024-2032) ($MN)
  • Table 11 Global Automotive AI Diagnostics Market Outlook, By Deployment (2024-2032) ($MN)
  • Table 12 Global Automotive AI Diagnostics Market Outlook, By On-Premises (2024-2032) ($MN)
  • Table 13 Global Automotive AI Diagnostics Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 14 Global Automotive AI Diagnostics Market Outlook, By Technology (2024-2032) ($MN)
  • Table 15 Global Automotive AI Diagnostics Market Outlook, By Machine Learning (ML) (2024-2032) ($MN)
  • Table 16 Global Automotive AI Diagnostics Market Outlook, By Computer Vision (2024-2032) ($MN)
  • Table 17 Global Automotive AI Diagnostics Market Outlook, By Deep Learning (DL) (2024-2032) ($MN)
  • Table 18 Global Automotive AI Diagnostics Market Outlook, By Natural Language Processing (NLP) (2024-2032) ($MN)
  • Table 19 Global Automotive AI Diagnostics Market Outlook, By Application (2024-2032) ($MN)
  • Table 20 Global Automotive AI Diagnostics Market Outlook, By Vehicle Health Monitoring (2024-2032) ($MN)
  • Table 21 Global Automotive AI Diagnostics Market Outlook, By Onboard Diagnostics (OBD) (2024-2032) ($MN)
  • Table 22 Global Automotive AI Diagnostics Market Outlook, By Predictive Maintenance (2024-2032) ($MN)
  • Table 23 Global Automotive AI Diagnostics Market Outlook, By Remote Diagnostics (2024-2032) ($MN)
  • Table 24 Global Automotive AI Diagnostics Market Outlook, By Advanced Driver Assistance Systems (ADAS) (2024-2032) ($MN)
  • Table 25 Global Automotive AI Diagnostics Market Outlook, By Safety & Compliance (2024-2032) ($MN)
  • Table 26 Global Automotive AI Diagnostics Market Outlook, By End User (2024-2032) ($MN)
  • Table 27 Global Automotive AI Diagnostics Market Outlook, By Original Equipment Manufacturers (OEMs) (2024-2032) ($MN)
  • Table 28 Global Automotive AI Diagnostics Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 29 Global Automotive AI Diagnostics Market Outlook, By Aftermarket Service Providers (2024-2032) ($MN)
  • Table 30 Global Automotive AI Diagnostics Market Outlook, By Fleet Operators (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.