封面
市场调查报告书
商品编码
1871105

硅光子技术在汽车通讯领域的市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Silicon Photonics for Vehicle Communication Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球用于汽车通讯的硅光子学市场价值为 3.035 亿美元,预计到 2034 年将以 19.2% 的复合年增长率增长至 17.5 亿美元。

硅光子技术在车辆通讯市场的应用 - IMG1

市场成长主要得益于硅光子技术在先进汽车通讯系统中的日益普及。硅光子技术将雷射、探测器和调製器等光基组件整合到硅晶片上,从而实现更快、更有效率、更节能的资料传输。在现代汽车中,这些技术在车对车 (V2V)、车对基础设施 (V2I) 和车对万物 (V2X) 通讯系统中发挥核心作用。它们还支援雷射雷达 (LiDAR) 和高速车载资料网络,而这些对于先进驾驶辅助系统(ADAS) 和自动驾驶至关重要。半自动驾驶和全自动驾驶汽车的广泛应用正在加速硅光子技术的普及,因为它们需要高频宽、低延迟的通讯和感测。基于硅光子的雷射雷达系统因其卓越的测距精度和比传统系统更有效率的速度测量能力而备受青睐。此外,随着汽车电子产品的发展,高清摄影机、智慧感测器和资讯娱乐设备的普及,製造商正在从铜基布线转向光子互连,光子互连可提供更大的资料容量、更轻的重量和更好的讯号完整性。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 3.035亿美元
预测值 17.5亿美元
复合年增长率 19.2%

2024年,光波导市占率达到25%,预计到2034年将以19.7%的复合年增长率成长。波导在晶片组件间引导和限制光讯号方面发挥着至关重要的作用。在汽车应用中,紧凑性、性能和可靠性至关重要,而波导能够实现高效、低损耗的通讯链路。它们被广泛整合到高速车内通讯系统和基于雷射雷达的感测解决方案中,为连网车辆的即时资料传输提供更高的频宽和更优异的光效率。

2024年,收发器市占率达到40%,预计2025年至2034年将以19%的复合年增长率成长。由于收发器在实现高速、无干扰资料交换方面发挥重要作用,因此在硅光子车载通讯市场占据主导地位。随着车辆互联程度的提高和感测器数量的增加,它们会产生大量讯息,这些资讯必须快速可靠地传输。传统的铜缆系统面临频宽限制、讯号衰减和电磁干扰等挑战,因此基于光子的收发器是下一代车辆架构的更优选择。

北美硅光子汽车通讯市场占据34%的市场份额,预计2024年市场规模将达到1.028亿美元。该地区的领先地位源于其强大的创新生态系统、先进的半导体基础设施以及新兴汽车技术的广泛应用。政府措施、大学研究计画以及领先的光子和半导体製造商的存在进一步巩固了北美的市场地位。持续的研发投入以及汽车和科技产业的合作正在加速该地区硅光子通讯系统的商业化进程。

全球硅光子车载通讯市场的主要参与者包括博通、英特尔、英飞凌科技、英伟达、思科系统、Marvell Technology、高通、义法半导体、恩智浦半导体和格罗方德。为了巩固其在硅光子车载通讯市场的地位,各大公司正采取一系列策略倡议,重点在于创新、可扩展性和合作。领先企业正大力投资研发,以开发具有更高频宽、更低延迟和更高能源效率的下一代光子晶片。他们正与汽车OEM厂商和科技公司建立策略合作伙伴关係,以加速系统集成,并将光子通讯技术应用于量产车。此外,各公司也正在扩大製造能力,并探索电子和光子元件的混合集成,以优化性能和成本效益。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预报
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 不断发展的ADAS和自动驾驶系统需要高速资料传输。
      • V2X 和车载网路需要低延迟、高可靠性的链路
      • 对于电动车和连网汽车而言,节能高效的通讯至关重要。
      • 整合技术的进步使得强大的汽车级解决方案成为可能。
      • CASE(互联、自动驾驶、共享、电动)趋势扩大了需求
      • 不断发展的安全和性能标准推动了技术的应用。
    • 产业陷阱与挑战
      • 高昂的研发和製造成本阻碍了规模化发展
      • 恶劣车辆环境下的整合性和可靠性挑战
    • 市场机会
      • 光达整合可提升性能并降低成本。
      • 光互连可以简化车辆架构
      • 共封装光学元件可实现紧凑、节能的设计。
      • 监管机构和消费者的推动促进了需求成长。
  • 成长潜力分析
  • 专利分析
  • 波特的分析
  • PESTEL 分析
  • 成本細項分析
  • 技术格局
    • 当前技术趋势
      • 硅光子製造製程成熟度
      • 光学相控阵性能基准测试
      • 高速调製器和侦测器功能
      • 包装和整合解决方案
    • 新兴技术
      • 下一代硅光子平台
      • 量子增强光通讯
      • AI/ML优化的光子系统
  • 监管环境
    • AEC-Q100 可靠度要求与测试规程
    • ISO 26262 功能安全合规框架
    • V2X 通讯标准(IEEE 802.11p、5G NR-V2X)
    • 光达安全标准(IEC 60825-1)
    • ISO/SAE 21434 汽车网路安全标准
    • GDPR 与区域资料隐私合规性
  • 价格趋势
    • 按地区
    • 副产品
  • 永续性和环境方面
    • 环境影响评估
    • 硅光子学生命週期碳足迹
    • 製造过程对环境的影响
    • 环境绩效指标
    • 社会影响评估和社区效益
    • 绿色製造流程实施
  • 投资与融资趋势分析
  • 成本細項分析
    • 硅光子学成本结构分解
    • 製造成本驱动因素和最佳化
    • 成本降低策略及实施
  • 最终使用者行为分析
    • 汽车OEM决策过程
    • 技术采纳行为分析
    • 影响购买决策的因素
    • 市场阻力与障碍分析
  • 颠覆性技术的威胁与机会
    • 替代光通讯技术
    • 竞争性的感测和光达方法
    • 材料科学的突破性进展
    • 系统级架构创新

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依组件划分,2021-2034年

  • 主要趋势
  • 光波导
  • 光电探测器
  • 数据机
  • 光源/雷射
  • 过滤器
  • 其他的

第六章:市场估算与预测:依产品划分,2021-2034年

  • 主要趋势
  • 收发器
  • 开关
  • 电缆
  • 感应器
  • 其他的

第七章:市场估计与预测:依技术划分,2021-2034年

  • 主要趋势
  • CMOS
  • 混合硅光子学
  • 绝缘体上硅(SOI)光子学
  • 氮化硅光子学

第八章:市场估算与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商用车辆
    • 轻型商用车(LCV)
    • 中型商用车(MCV)
    • 重型商用车(HCV)

第九章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 北欧
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 印尼
    • 菲律宾
    • 泰国
    • 韩国
    • 新加坡
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十章:公司简介

  • 全球参与者
    • Broadcom
    • Cisco Systems
    • GlobalFoundries
    • Infineon Technologies
    • Intel
    • Marvell Technology
    • Nvidia
    • NXP Semiconductors
    • Qualcomm
    • STMicroelectronics
    • Synopsys
    • Texas Instruments
    • TSMC
  • 区域玩家
    • Anello Photonics
    • Foxconn Technology
    • LIGENTEC
    • Lumentum
    • Silicon Austria Labs
    • Valeo
    • Xanadu Quantum Technologies
  • 新兴参与者/颠覆者
    • Aeva Technologies
    • Ayar Labs
    • Baraja
    • Lightmatter
    • Rockley Photonics
简介目录
Product Code: 15048

The Global Silicon Photonics for Vehicle Communication Market was valued at USD 303.5 million in 2024 and is estimated to grow at a CAGR of 19.2% to reach USD 1.75 Billion by 2034.

Silicon Photonics for Vehicle Communication Market - IMG1

Market growth is propelled by the increasing deployment of silicon photonics in advanced automotive communication systems. Silicon photonics integrate light-based components such as lasers, detectors, and modulators onto silicon chips, enabling faster, more efficient, and energy-saving data transmission. In modern vehicles, these technologies play a central role in vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) communication systems. They also support LiDAR and high-speed in-vehicle data networks, which are critical for advanced driver assistance systems (ADAS) and autonomous driving. The expanding use of semi-autonomous and fully autonomous vehicles is accelerating adoption as they require high-bandwidth, low-latency communication and sensing. Silicon photonics-based LiDAR systems are gaining traction due to their superior range accuracy and ability to measure velocity more effectively than traditional systems. Moreover, as automotive electronics evolve with a rise in HD cameras, smart sensors, and infotainment devices, manufacturers are shifting from copper-based wiring to photonic interconnects that offer greater data capacity, lighter weight, and improved signal integrity.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$303.5 Million
Forecast Value$1.75 Billion
CAGR19.2%

The optical waveguides segment held a 25% share in 2024 and is expected to grow at a CAGR of 19.7% through 2034. Waveguides play a crucial role in directing and confining optical signals among chip components. In automotive applications, where compactness, performance, and reliability are critical, waveguides enable efficient, low-loss communication links. They are widely integrated into high-speed intra-vehicle communication systems and LiDAR-based sensing solutions, providing enhanced bandwidth and superior optical efficiency for real-time data transmission in connected vehicles.

The transceivers segment held a 40% share in 2024 and is estimated to register a CAGR of 19% from 2025 to 2034. Transceivers dominate the silicon photonics for vehicle communication market due to their role in enabling high-speed, interference-free data exchange. As vehicles become more connected and sensor-rich, they generate massive amounts of information that must be transmitted rapidly and reliably. Conventional copper-based systems face challenges such as bandwidth constraints, signal degradation, and electromagnetic interference, making photonics-based transceivers a superior alternative for next-generation vehicle architectures.

North America Silicon Photonics for Vehicle Communication Market held 34% share and generated USD 102.8 million in 2024. The region's leadership stems from its strong innovation ecosystem, advanced semiconductor infrastructure, and high adoption of emerging automotive technologies. Government initiatives, university research programs, and the presence of leading photonic and semiconductor manufacturers further strengthen North America's position. Continuous R&D investments, along with collaboration across automotive and tech sectors, are accelerating the commercialization of silicon photonics-based communication systems across the region.

Key companies operating in the Global Silicon Photonics for Vehicle Communication Market include Broadcom, Intel, Infineon Technologies, Nvidia, Cisco Systems, Marvell Technology, Qualcomm, STMicroelectronics, NXP Semiconductors, and GlobalFoundries. To reinforce their position in the Silicon Photonics for Vehicle Communication Market, major companies are adopting a mix of strategic initiatives focused on innovation, scalability, and collaboration. Leading players are heavily investing in R&D to develop next-generation photonic chips with higher bandwidth, lower latency, and better energy efficiency. Strategic partnerships with automotive OEMs and technology firms are being formed to accelerate system integration and bring photonic-enabled communication to production vehicles. Companies are also expanding their manufacturing capabilities and exploring hybrid integration of electronic and photonic components to optimize performance and cost efficiency.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Product
    • 2.2.4 Technology
    • 2.2.5 Vehicle
  • 2.3 TAM analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future-outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factors affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing ADAS and autonomous systems need high-speed data transfer
      • 3.2.1.2 V2X and in-vehicle networks require low-latency, high-reliability links
      • 3.2.1.3 Power-efficient communication is critical for EVs and connected cars
      • 3.2.1.4 Advancements in integration enable robust automotive-grade solutions
      • 3.2.1.5 CASE (Connected, Autonomous, Shared, Electric) trends expand demand
      • 3.2.1.6 Evolving safety and performance standards push tech adoption
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High development and manufacturing costs hinder scalability
      • 3.2.2.2 Integration and reliability challenges in harsh vehicle environments
    • 3.2.3 Market opportunities
      • 3.2.3.1 LiDAR integration offers performance and cost improvements
      • 3.2.3.2 Optical interconnects can simplify vehicle architecture
      • 3.2.3.3 Co-packaged optics enable compact, energy-efficient designs
      • 3.2.3.4 Regulatory and consumer push boosts demand
  • 3.3 Growth potential analysis
  • 3.4 Patent analysis
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Cost breakdown analysis
  • 3.8 Technology landscape
    • 3.8.1 Current technological trends
      • 3.8.1.1 Silicon photonics manufacturing maturity
      • 3.8.1.2 Optical phased array performance benchmarks
      • 3.8.1.3 High-speed modulator and detector capabilities
      • 3.8.1.4 Packaging and integration solutions
    • 3.8.2 Emerging technologies
      • 3.8.2.1 Next-generation silicon photonics platforms
      • 3.8.2.2 Quantum-enhanced optical communication
      • 3.8.2.3 AI/ML-optimized photonic systems
  • 3.9 Regulatory landscape
    • 3.9.1 AEC-Q100 reliability requirements and testing protocols
    • 3.9.2 ISO 26262 functional safety compliance framework
    • 3.9.3 V2X communication standards (IEEE 802.11p, 5G NR-V2X)
    • 3.9.4 LiDAR safety standards (IEC 60825-1)
    • 3.9.5 ISO/SAE 21434 automotive cybersecurity standards
    • 3.9.6 GDPR and regional data privacy compliance
  • 3.10 Price trends
    • 3.10.1 By region
    • 3.10.2 By product
  • 3.11 Sustainability and environmental aspects
    • 3.11.1 Environmental impact assessment
    • 3.11.2 Silicon photonics lifecycle carbon footprint
    • 3.11.3 Manufacturing process environmental impact
    • 3.11.4 Environmental performance indicators
    • 3.11.5 Social impact assessment and community benefits
    • 3.11.6 Green manufacturing process implementation
  • 3.12 Investment & funding trends analysis
  • 3.13 Cost breakdown analysis
    • 3.13.1 Silicon photonics cost structure decomposition
    • 3.13.2 Manufacturing cost drivers and optimization
    • 3.13.3 Cost reduction strategies and implementation
  • 3.14 End use behavior analysis
    • 3.14.1 Automotive OEM decision-making processes
    • 3.14.2 Technology adoption behavior analysis
    • 3.14.3 Purchase decision influencing factors
    • 3.14.4 Market resistance and barrier analysis
  • 3.15 Disruptive technology threats and opportunities
    • 3.15.1 Alternative optical communication technologies
    • 3.15.2 Competing sensing and LiDAR approaches
    • 3.15.3 Breakthrough material science developments
    • 3.15.4 System-level architecture innovations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 (USD Mn, Units)

  • 5.1 Key trends
  • 5.2 Optical waveguides
  • 5.3 Photodetectors
  • 5.4 Modulators
  • 5.5 Light sources/lasers
  • 5.6 Filters
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Product, 2021 - 2034 (USD Mn, Units)

  • 6.1 Key trends
  • 6.2 Transceivers
  • 6.3 Switches
  • 6.4 Cables
  • 6.5 Sensors
  • 6.6 Others

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 (USD Mn, Units)

  • 7.1 Key trends
  • 7.2 CMOS
  • 7.3 Hybrid silicon photonics
  • 7.4 Silicon-on-insulator (SOI) photonics
  • 7.5 Silicon nitride photonics

Chapter 8 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Mn, Units)

  • 8.1 Key trends
  • 8.2 Passenger cars
    • 8.2.1 Hatchback
    • 8.2.2 Sedan
    • 8.2.3 SUV
  • 8.3 Commercial vehicles
    • 8.3.1 Light commercial vehicles (LCV)
    • 8.3.2 Medium commercial vehicles (MCV)
    • 8.3.3 Heavy commercial vehicles (HCV)

Chapter 9 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Mn, Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Nordics
    • 9.3.7 Russia
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 Indonesia
    • 9.4.6 Philippines
    • 9.4.7 Thailand
    • 9.4.8 South Korea
    • 9.4.9 Singapore
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Global Players
    • 10.1.1 Broadcom
    • 10.1.2 Cisco Systems
    • 10.1.3 GlobalFoundries
    • 10.1.4 Infineon Technologies
    • 10.1.5 Intel
    • 10.1.6 Marvell Technology
    • 10.1.7 Nvidia
    • 10.1.8 NXP Semiconductors
    • 10.1.9 Qualcomm
    • 10.1.10 STMicroelectronics
    • 10.1.11 Synopsys
    • 10.1.12 Texas Instruments
    • 10.1.13 TSMC
  • 10.2 Regional Players
    • 10.2.1 Anello Photonics
    • 10.2.2 Foxconn Technology
    • 10.2.3 LIGENTEC
    • 10.2.4 Lumentum
    • 10.2.5 Silicon Austria Labs
    • 10.2.6 Valeo
    • 10.2.7 Xanadu Quantum Technologies
  • 10.3 Emerging Players / Disruptors
    • 10.3.1 Aeva Technologies
    • 10.3.2 Ayar Labs
    • 10.3.3 Baraja
    • 10.3.4 Lightmatter
    • 10.3.5 Rockley Photonics