封面
市场调查报告书
商品编码
1888666

美国人工智慧护理师排班软体市场规模、份额和趋势分析报告:按部署方式、应用、最终用途和细分市场预测(2025-2033 年)

U.S. AI In Nurse Scheduling Software Market Size, Share & Trends Analysis Report By Deployment Mode, By Application, By End-use, And Segment Forecasts, 2025 - 2033

出版日期: | 出版商: Grand View Research | 英文 100 Pages | 商品交期: 2-10个工作天内

价格

市场规模与趋势:

2024年美国人工智慧护理师排班软体市场规模估计为5,558万美元,预计到2033年将达到5.1641亿美元。

预计2025年至2033年,该产业的复合年增长率将达到28.40%。对营运效率日益增长的需求以及护理专业短缺问题日益严重是推动市场成长的主要因素。此外,人工智慧和机器学习技术的进步也促进了市场成长。

在美国,对营运效率日益增长的需求正在推动人工智慧护理师排班软体产业的发展。由于患者数量不断增加和护理需求不断波动,医院和诊所面临复杂的员工配备问题。人工智慧驱动的排班解决方案可以自动执行日常任务,提高准确性,并支援即时调整。这些系统优化了护理人员配置,减轻了行政负担,提高了轮班覆盖率,从而改善了患者预后并降低了护理人员的职业倦怠。

基于人工智慧的护理师排班解决方案可实现手动排班的自动化,使管理人员能够专注于患者照护。先进的演算法可根据患者数量趋势、病情严重程度和技能组合即时调整人员配置,从而减少加班和人事费用。例如,Epic Systems 正在开发一款由人工智慧驱动的临床文件工具,计划于 2026 年初发布,旨在减少护理师和临床医生在文件编制和行政管理方面花费的时间。这款原生人工智慧图表工具利用了整合到 Epic 应用程式中的微软 Dragon Ambient AI,可自动建立部分病患病历。

此外,美国专业日益短缺,这对医疗保健系统构成重大挑战,也推动了人工智慧驱动的护理人员排班系统的应用。医院和长期照护机构发现,在遵守劳动法规和确保照护品质的同时,维持适当的医护人员与病患比例变得越来越困难。例如,根据美国护理学院协会 (AACN) 发布的数据,联邦政府预测,到 2025 年,全职註册护理师 (RN) 的缺口将达到 78,610 人,到 2030 年将达到 63,720 人。

目录

第一章调查方法和范围

第二章执行摘要

第三章美国人工智慧护理师排班软体市场变数、趋势与范围

  • 市场谱系展望
    • 母市场展望
    • 相关及附随市场展望
  • 市场动态
  • 案例研究
  • 美国人工智慧护理师排班软体市场分析工具
    • 产业分析—波特五力
    • PESTEL 分析

第四章美国人工智慧护理师排班软体市场:按部署方式分類的估算与趋势分析

  • 美国人工智慧护理师排班软体市场:以部署方式分析市场波动
  • 美国人工智慧护理师排班软体市场规模及部署趋势分析(2021-2033年)
  • 云端基础的
  • 本地部署

第五章美国人工智慧护理师排班软体市场:按应用分類的估算与趋势分析

  • 美国人工智慧护理师排班软体市场:按应用分類的趋势分析
  • 美国人工智慧护理师排班软体市场规模及应用趋势分析(2021-2033年)
  • 轮班排班与优化
  • 需求和人员配置预测
  • 休假和缺勤管理
  • 分析与报告
  • 其他的

第六章美国人工智慧护理师排班软体市场:依最终用途分類的估算与趋势分析

  • 美国人工智慧护理师排班软体市场:按最终用途分類的差异分析
  • 美国人工智慧护理师排班软体市场规模及趋势分析(依最终用途划分,2021-2033年)
  • 医院
  • 门诊手术中心(ASC)
  • 长期照护机构
  • 居家医疗机构
  • 诊所和专科医疗中心
  • 其他的

第七章 竞争情势

  • 公司/竞争对手分类
  • 策略规划
  • 2024年商业市场分析
  • 公司简介/列表
    • QGenda, LLC
    • In-House Health, Inc.
    • symplr
    • Connecteam
    • Deputy
    • MakeShift
    • Medecipher Solutions
    • ShiftMed
Product Code: GVR-4-68040-810-0

Market Size & Trends:

The U.S. AI in nurse scheduling software market size was estimated at USD 55.58 million in 2024 and is projected to reach USD 516.41 million by 2033, growing at a CAGR of 28.40% from 2025 to 2033. The rising demand for operational efficiency and the growing shortage of nursing professionals are significant factors contributing to market growth. In addition, advancements in AI and machine learning are other factors fueling market growth.

Rising demand for operational efficiency drives the U.S. AI nurse scheduling software industry. Hospitals and clinics face complex staffing demands, driven by increasing patient influxes and fluctuating care needs. AI-powered scheduling solutions automate routine tasks, enhancing accuracy and enabling real-time adjustments. These systems optimize nurse allocation, reduce administrative burdens, and enhance shift coverage, leading to improved patient outcomes and reduced nurse fatigue.

AI-based nurse scheduling solutions automate manual scheduling, allowing managers to focus on patient care. Advanced algorithms adjust staffing in real-time based on census trends, patient acuity, and skill mix, thereby reducing overtime and agency costs. For instance, Epic Systems is developing AI-powered clinical documentation tools, expected to launch in early 2026, aimed at reducing the time nurses and clinicians spend on documentation and administrative tasks. The native AI charting tool will automatically draft parts of patient records using Microsoft's Dragon Ambient AI integrated within Epic's apps.

Moreover, the growing shortage of nursing professionals across the U.S. presents a significant challenge for healthcare systems, driving the adoption of AI-driven nurse scheduling software. Hospitals and long-term care facilities are increasingly struggling to maintain adequate staff-to-patient ratios while complying with labor regulations and ensuring high-quality care. For instance, according to the data published by the American Association of Colleges of Nursing (AACN), federal authorities project a shortage of 78,610 full-time registered nurses (RNs) in 2025 and 63,720 in 2030.

U.S. AI In Nurse Scheduling Software Market Report Segmentation

This report forecasts revenue growth at country levels and provides an analysis of the latest industry trends in each of the sub-segments from 2021 to 2033. For this study, Grand View Research has segmented the U.S. AI in nurse scheduling software market report based on deployment mode, application, and end-use:

  • Deployment Mode Outlook (Revenue, USD Million, 2021 - 2033)
    • Cloud-Based
    • On-Premises
  • Application Outlook (Revenue, USD Million, 2021 - 2033)
    • Shift Scheduling & Optimization
    • Demand Forecasting & Staffing Prediction
    • Leave & Absence Management
    • Analytics & Reporting
    • Others
  • End-use Outlook (Revenue, USD Million, 2021 - 2033)
    • Hospitals
    • Ambulatory Surgical Centers (ASCs)
    • Long-Term Care Facilities
    • Home Healthcare Agencies
    • Clinics & Specialty Centers
    • Others (Rehabilitation & Mental Health Centers)

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation & Scope
  • 1.2. Market Definitions
    • 1.2.1. Deployment Mode Segment
    • 1.2.2. Application Segment
    • 1.2.3. End Use
  • 1.3. Information analysis
    • 1.3.1. Market formulation & data visualization
  • 1.4. Data validation & publishing
  • 1.5. Information Procurement
    • 1.5.1. Primary Research
  • 1.6. Information or Data Analysis
  • 1.7. Market Formulation & Validation
  • 1.8. Market Model
  • 1.9. Total Market: CAGR Calculation
  • 1.10. Objectives
    • 1.10.1. Objective 1
    • 1.10.2. Objective 2

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Snapshot
  • 2.3. Competitive Insights Landscape

Chapter 3. U.S. AI in Nurse Scheduling Software Market Variables, Trends & Scope

  • 3.1. Market Lineage Outlook
    • 3.1.1. Parent market outlook
    • 3.1.2. Related/ancillary market outlook.
  • 3.2. Market Dynamics
    • 3.2.1. Market driver analysis
    • 3.2.2. Market restraint analysis
    • 3.2.3. Market opportunity analysis
    • 3.2.4. Market challenges analysis
  • 3.3. Case Studies
  • 3.4. U.S. AI in Nurse Scheduling Software Market Analysis Tools
    • 3.4.1. Industry Analysis - Porter's
      • 3.4.1.1. Supplier power
      • 3.4.1.2. Buyer power
      • 3.4.1.3. Substitution threat
      • 3.4.1.4. Threat of new entrant
      • 3.4.1.5. Competitive rivalry
    • 3.4.2. PESTEL Analysis
      • 3.4.2.1. Political landscape
      • 3.4.2.2. Technological landscape
      • 3.4.2.3. Economic landscape
      • 3.4.2.4. Environmental Landscape
      • 3.4.2.5. Legal Landscape
      • 3.4.2.6. Social Landscape

Chapter 4. U.S. AI in Nurse Scheduling Software Market: Deployment Mode Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. U.S. AI in Nurse Scheduling Software Market Deployment Mode Movement Analysis
  • 4.3. U.S. AI in Nurse Scheduling Software Market Size & Trend Analysis, by Deployment Mode, 2021 to 2033 (USD Million)
  • 4.4. Cloud-based
    • 4.4.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 4.5. On-premises
    • 4.5.1. Market estimates and forecasts, 2021 to 2033 (USD Million)

Chapter 5. U.S. AI in Nurse Scheduling Software Market: Application Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. U.S. AI in Nurse Scheduling Software Market Application Movement Analysis
  • 5.3. U.S. AI in Nurse Scheduling Software Market Size & Trend Analysis, by Application, 2021 to 2033 (USD Million)
  • 5.4. Shift Scheduling & Optimization
    • 5.4.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 5.5. Demand Forecasting & Staffing Prediction
    • 5.5.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 5.6. Leave & Absence Management
    • 5.6.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 5.7. Analytics & Reporting
    • 5.7.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 5.8. Others
    • 5.8.1. Market estimates and forecasts, 2021 to 2033 (USD Million)

Chapter 6. U.S. AI in Nurse Scheduling Software Market: End Use Estimates & Trend Analysis

  • 6.1. Segment Dashboard
  • 6.2. U.S. AI in Nurse Scheduling Software Market End Use Movement Analysis
  • 6.3. U.S. AI in Nurse Scheduling Software Market Size & Trend Analysis, by End Use, 2021 to 2033 (USD Million)
  • 6.4. Hospitals
    • 6.4.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 6.5. Ambulatory Surgical Centers (ASCs)
    • 6.5.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 6.6. Long-Term Care Facilities
    • 6.6.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 6.7. Home Healthcare Agencies
    • 6.7.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 6.8. Clinics & Specialty Centers
    • 6.8.1. Market estimates and forecasts, 2021 to 2033 (USD Million)
  • 6.9. Others
    • 6.9.1. Market estimates and forecasts, 2021 to 2033 (USD Million)

Chapter 7. Competitive Landscape

  • 7.1. Company/Competition Categorization
  • 7.2. Strategy Mapping
  • 7.3. Company Market Position Analysis, 2024
  • 7.4. Company Profiles/Listing
    • 7.4.1. QGenda, LLC
      • 7.4.1.1. Company overview
      • 7.4.1.2. Financial performance
      • 7.4.1.3. Product benchmarking
      • 7.4.1.4. Strategic initiatives
    • 7.4.2. In-House Health, Inc.
      • 7.4.2.1. Company overview
      • 7.4.2.2. Financial performance
      • 7.4.2.3. Product benchmarking
      • 7.4.2.4. Strategic initiatives
    • 7.4.3. symplr
      • 7.4.3.1. Company overview
      • 7.4.3.2. Financial performance
      • 7.4.3.3. Product benchmarking
      • 7.4.3.4. Strategic initiatives
    • 7.4.4. Connecteam
      • 7.4.4.1. Company overview
      • 7.4.4.2. Financial performance
      • 7.4.4.3. Product benchmarking
      • 7.4.4.4. Strategic initiatives
    • 7.4.5. Deputy
      • 7.4.5.1. Company overview
      • 7.4.5.2. Financial performance
      • 7.4.5.3. Product benchmarking
      • 7.4.5.4. Strategic initiatives
    • 7.4.6. MakeShift
      • 7.4.6.1. Company overview
      • 7.4.6.2. Financial performance
      • 7.4.6.3. Product benchmarking
      • 7.4.6.4. Strategic initiatives
    • 7.4.7. Medecipher Solutions
      • 7.4.7.1. Company overview
      • 7.4.7.2. Financial performance
      • 7.4.7.3. Product benchmarking
      • 7.4.7.4. Strategic initiatives
    • 7.4.8. ShiftMed
      • 7.4.8.1. Company overview
      • 7.4.8.2. Financial performance
      • 7.4.8.3. Product benchmarking
      • 7.4.8.4. Strategic initiatives

List of Tables

  • Table 1 List of abbreviations
  • Table 2 U.S. AI in nurse scheduling software market, by deployment mode, 2021 - 2033 (USD Million)
  • Table 3 U.S. AI in nurse scheduling software market, by application, 2021 - 2033 (USD Million)
  • Table 4 U.S. AI in nurse scheduling software market, by end use, 2021 - 2033 (USD Million)

List of Figures

  • Fig. 1 Market research process
  • Fig. 2 Market research process
  • Fig. 3 Data triangulation techniques
  • Fig. 4 Market formulation & validation
  • Fig. 5 U.S. AI in nurse scheduling software market: Market outlook
  • Fig. 6 U.S. AI in nurse scheduling software market: Segment outlook
  • Fig. 7 U.S. AI in nurse scheduling software market: Competitive landscape outlook
  • Fig. 8 Parent market outlook
  • Fig. 9 U.S. AI in nurse scheduling software market driver impact
  • Fig. 10 U.S. AI in nurse scheduling software market restraint impact
  • Fig. 11 U.S. AI in nurse scheduling software market: Deployment mode outlook and key takeaways
  • Fig. 12 U.S. AI in nurse scheduling software market: Deployment mode movement analysis
  • Fig. 13 Cloud-based market estimates and forecasts,2021 - 2033 (USD Million)
  • Fig. 14 On-premises market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 15 U.S. AI in nurse scheduling software market: Application outlook and key takeaways
  • Fig. 16 U.S. AI in nurse scheduling software market: Application movement analysis
  • Fig. 17 Shift scheduling & optimization market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 18 Demand forecasting & staffing prediction market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 19 Leave & absence management market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 20 Analytics & reporting market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 21 Others market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 22 U.S. AI in nurse scheduling software market: End use outlook and key takeaways
  • Fig. 23 U.S. AI in nurse scheduling software market: End use movement analysis
  • Fig. 24 Hospitals market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 25 Ambulatory surgical centers (ASCs) market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 26 Long-term care facilities market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 27 Home healthcare agencies market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 28 Clinics & specialty centers market estimates and forecasts, 2021 - 2033 (USD Million)
  • Fig. 29 Others market estimates and forecasts, 2021 - 2033 (USD Million)