封面
市场调查报告书
商品编码
1198559

合成气衍生物市场 - COVID-19 的增长、趋势、影响和预测 (2023-2028)

Syngas Derivatives Market - Growth, Trends, and Forecasts (2023 - 2028)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

在预测期内,合成气衍生品市场的复合年增长率预计将超过 9%。

COVID-19 疫情让全球合成气和衍生品市场倖免于难。 由于燃料需求下降,许多合成气和衍生物生产单位因供应链中断而中断。 此外,对塑料的需求不断增长,尤其是在医疗保健领域和个人防护设备领域,推动了化工行业对合成气和衍生物市场的需求。

主要亮点

  • 短期内,环境限制的增加和清洁技术的出现可能会推动对合成气和衍生物的需求增加。 由于全球污染水平很高,许多政府都鼓励其公民采用清洁技术。 这些概念和活动有望促进全球市场的蓬勃发展。 合成气及衍生物的研发活动也有望推动该业务的发展。 公司大量投资于研发以增加收入。 预计大量投资将长期推动全球市场发展,并在预测期内推动市场增长。
  • 但是,限制合成气和衍生物市场增长的因素包括资本成本高以及使用最先进的气化技术建造运营工厂所需的时间。
  • 但是,快速城市化、基础设施发展、石油和天然气行业的发现等是减缓整个行业增长的关键因素,并在预测期内赋予其巨大潜力。
  • 就收入和预测而言,预计亚太地区将在预测期内主导全球市场,在全球合成气衍生品市场中占据最高市场份额。

合成气衍生物的市场趋势

运输燃料占据重要市场份额

  • 在预测期内,运输燃料领域预计将以 10.3% 的复合年增长率增长。 随着航空业从化石能源向可持续能源过渡,可将温室气体排放量减少高达 100% 的电转液 (PtL) 燃料可能成为一种可行的选择。
  • 铂液化燃料由两个基本过程製成:燃料合成和甲醇到喷气的转化。 两者都需要生产“合成气”,一种一氧化碳和氢气的混合物。
  • 可使用共电解和逆向水煤气变换来生产合成气。 共电解不需要单独生产氢气。 RWGS需要可再生氢或低碳氢作为生成合成气的先决条件,而共电解可以在单一过程中生成合成气。
  • 如果共电解作为合成气生产的一个阶段成熟。 如果是这样,它应该比 RWGS 有一些优势,例如由于氢气和合成气合成阶段的成本节省而降低了燃料生产成本。 通过与热回收和燃料合成阶段相结合,共电解有可能成为更高效的过程。 除了这两种方法之外,还有几家公司正在试验新的可能改变游戏规则的技术。
  • 低碳、可再生氢气生产方面的进步对于铂族价值链的成熟也至关重要。 将氢气的标准化成本降低至低于 1 美元/千克(包括可再生能源输入,不包括运输和配送)将导致铂金成本为每吨 1,200-1,800 美元,具体取决于碳源,到 2030 年,平均价格将下降 40%。 这仍然比化石喷气燃料贵,但比替代 SAF 更实惠。
  • 低碳氢,称为“蓝色”,主要通过碳捕获和储存从天然气中获得,而从可再生能源中获得的“绿色”氢是从可再生能源中获得的。 低碳氢目前比可再生氢更便宜,可以用作加速 PtL 缩放的过渡技术。
  • 虽然低碳氢的生产成本有所下降,但生产铂族金属需要在製氢过程和燃料合成阶段两次吸收二氧化碳。 这是低效的,因此可再生氢可能是长期铂族生产的首选。
  • 要将铂金解决方案的投入价格保持在每兆瓦时 15-20 美元以下,就需要并且将需要快速研究和开发可再生能源以及超出预期的成本降低。 铂族喷气燃料的年产量预计将从 2025 年的约 10 万吨扩大到 2035 年的 10-1.05 亿吨,有可能在 10 年内增长 1000 倍以上。 为满足对液态铂的需求,2022 年至 2050 年间可能需要 3 万亿至 4 万亿美元的重大资本投资。 由于铂族金属属于资本密集型,投资者无疑将在扩大生产中发挥关键作用。
  • 根据英国石油公司 (BP) 的数据,2021 年全球石油消费量达到每天 9410 万桶。 这比前一年高出 6% 以上,当时由于大流行导致的旅行限制减少了对运输燃料的需求,全球石油消费量下降。
  • 上述所有因素都可能在未来几年支持所研究市场的需求。

亚太地区主导市场

  • 合成气衍生品市场在市场份额和市场收入方面以亚太地区为主。 预计该地区将在预测期内保持主导地位。
  • 城市化进程加快、基础设施建设、石油和天然气工业的发现以及丰富的煤炭和天然气储量预计将使亚太地区在未来几年保持领先地位。
  • 根据 CHEManager (Chemdata International) 的数据,中国将在 2021 年成为世界第三大化学品出口国,按价值计算占全球化学品出口的 9.6%。
  • 根据美国地质调查局的数据,2021 年全球氨产量约为 1.5 亿吨。 东亚合成氨产量最大,约6460万吨。 中国是世界上最大的合成氨生产国。 预计到 2021 年,该亚洲国家的氨产量将超过 3900 万吨含氮氨。 其次是俄罗斯、美国和印度,产量都在1000万吨以上。
  • 根据国别国际贸易统计年鑑 (HS),2021 年商品类别 290511“Methanol(甲醇)”的进口值为 38.6 亿美元。 产品类别290511“Methanol(甲醇)”的销售额增加了11.7亿美元。 2020年我国商品组290511进口额折合26.8亿美元。
  • 中国目前是世界上最重要的氢气生产国,年产量超过 3300 万吨。 2022 年 3 月 23 日,随着政府努力实现碳峰值中和目标,中国当局宣布了 2021-2035 年的氢能增长计划。
  • 根据国家发改委和国家能源局联合公布的规划,到 2025 年,我国将形成较为完备的氢能产业发展体系。 大幅提升创新能力,基本掌握核心技术和製造工艺。
  • 预计到 2025 年,可再生能源的年产氢量将达到 100,000 至 200,000 吨,成为新氢能源消耗的重要因素,每年产生 1 至 200 万吨二氧化碳,从而减少排放。
  • 中国的目标是到 2030 年实现可接受且有序的工业架构,并推广可再生氢能发电,坚定支持碳达峰目标。
  • 根据该计划,到 2035 年,可再生能源生产的氢气在终端能源消耗中的份额将大幅增加,从而支持国家的绿色能源革命。
  • 氢气通常是二次能源,需要输入一次能源才能大规模生产。 根据来源不同,氢气分为三种类型:灰色、蓝色和绿色,而绿色氢气是唯一一种以气候稳定的方式生产并具有减少排放潜力的形式。
  • 因此,由于上述所有原因,预计未来亚太地区对合成气衍生品市场的需求将会增加。

合成气衍生物市场竞争对手分析

合成气衍生品市场本质上是部分分散的。 市场上的主要製造商包括 BASF SE、CF Industries Holdings, Inc、Dow Inc、Shell PLC、SynGas Technology, LLC 等(排名不分先后)。

其他好处

  • Excel 格式的市场预测 (ME) 表
  • 三个月的分析师支持

内容

第1章介绍

  • 调查先决条件
  • 调查范围

第2章研究方法论

第 3 章执行摘要

第4章市场动态

  • 司机
    • 环境法规和清洁技术的兴起
    • 致力于合成气及衍生物的研发
  • 约束因素
    • 建造一个采用最先进气化技术的工作工厂需要大量的资本成本和时间
    • 其他约束
  • 工业价值链分析
  • 行业吸引力 - 波特五力分析
    • 供应商的议价能力
    • 买家的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争程度

第 5 章市场细分

  • 主要组成部分
    • 甲醇
    • 二甲醚
    • 含氧化学品
    • 氢气
  • 导数
    • 甲醛
    • 甲醇-烯烃 (MTO)/甲醇-丙烯 (MTP)
    • 甲基叔丁基醚 (MTBE)/叔戊基甲基醚 (TAME)
    • 对苯二甲酸二甲酯 (DMT)
    • 醋酸
    • 二甲醚
    • 甲基丙烯酸甲酯 (MMA)
  • 用法
    • 气雾剂产品
    • 液化石油气混合物
    • 发电燃料
    • 运输燃料
    • 丙烯酸酯
    • 乙二醇醚
    • 醋酸纤维
    • 润滑剂
    • 树脂
    • 其他用途
  • 最终用户行业
    • 农业部门
    • 纤维
    • 矿业
    • 医药
    • 冰雪奇缘
    • 化学品
    • 交通
    • 能量
    • 细化
    • 焊接和金属加工
    • 其他最终用户行业
  • 按地区
    • 亚太地区
      • 中国
      • 印度
      • 日本
      • 韩国
      • 其他亚太地区
    • 北美
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 意大利
      • 其他欧洲
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 中东
      • 南非
      • 沙特阿拉伯
      • 其他中东地区

第6章竞争格局

  • 併购、合资企业、合作、合同
  • 市场排名分析
  • 主要参与者的策略
  • 公司简介
    • Air Liquide Global E&C Solutions
    • Air Products and Chemicals, Inc.
    • BASF SE
    • CF Industries Holdings, Inc.
    • Chiyoda Corporation
    • Dow Inc.
    • General Electric Company
    • Haldor Topsoe A/S
    • Linde AG(The Linde Group)
    • Methanex Corporation
    • Nutrien Ltd.
    • Sasol Limited
    • Shell PLC
    • Siemens AG
    • SynGas Technology, LLC
    • Synthesis Energy Systems, Inc
    • TechnipFMC PLC

第7章市场机会与未来趋势

  • 快速城市化、基础设施发展、石油和天然气工业的发现
简介目录
Product Code: 93443

The Syngas Derivatives market is anticipated to register a CAGR of over 9% during the forecast period. The COVID-19 epidemic spared the syngas and derivatives market across the globe. The number of syngas and derivatives production units was disrupted due to interruptions in the supply chain caused by low fuel demand. Furthermore, the need for plastic expanded, particularly in the healthcare sector and personal protection equipment, raising the demand for the chemical sector's syngas and derivatives market.

Key Highlights

  • Over the short term, growing environmental constraints and the emergence of clean technologies can be attributed to the increased demand for syngas and derivatives. Because of the high pollution levels worldwide, governments in many nations are encouraging citizens to embrace clean technologies. These concepts and activities will likely contribute to the global market's bright future in terms of growth. R&D initiatives in syngas and derivatives are also expected to help the business develop. Businesses invest considerably in R&D to increase their income. Massive investments will likely boost the global market in the long run and drive market growth during the forecast period.
  • However, some impediments to syngas and derivatives market growth include substantial capital costs and the time required to build an operating plant with cutting-edge gasification techniques.
  • Nevertheless, rapid urbanization, infrastructure development, and discoveries in the oil & gas industry are some significant factors contributing to cushioning overall industry growth and giving substantial potential in the forecast period.
  • Regarding revenue, Asia-Pacific is expected to dominate the global market during the forecast period and includes the highest market share in the worldwide syngas derivatives market.

Syngas Derivatives Market Trends

Transportation Fuel include a Substantial Market Share

  • During the forecast period, the transportation fuel segment is expected to rise at a CAGR of 10.3%. Power-to-liquid (PtL) fuel may emerge as a practical option as aviation moves from fossil to sustainable energies, with up to 100% reductions in greenhouse gas emissions.
  • PtL fuels are created by two fundamental processes: fuel synthesis and methanol to jet. Both need synthesis gas generation, sometimes known as "syngas," a mixture of carbon monoxide and hydrogen.
  • Co-electrolysis or reverse water gas shift can be used to produce syngas. The co-electrolysis process eliminates the need for separate hydrogen production. It generates syngas in a single step, whereas RWGS requires renewable or low-carbon hydrogen as a prerequisite for generating syngas.
  • Suppose co-electrolysis can mature as a syngas-generation phase. In that case, it will have several advantages over RWGS, including lower levelized fuel production costs due to cost savings from the combined hydrogen and syngas production phases. Co-electrolysis include the potential to be a more efficient process due to heat recovery and integration with the fuel synthesis stage. Aside from these two approaches, several companies are experimenting with novel and potentially game-changing technology.
  • Low-carbon and renewable hydrogen generation advances will also be crucial to the PtL value chain maturation. Lowering the levelized hydrogen cost to less than USD 1 per kg (including renewable energy input but excluding transport and distribution) would reduce the cost of PtL to USD 1,200 to USD 1,800 per ton, depending on the carbon source, resulting in a 40% reduction in average price by 2030. While this is still more expensive than fossil jet fuel, it is more affordable than alternative SAFs.
  • Low-carbon hydrogen, often known as "blue," is mainly derived from natural gas through carbon capture and storage, whereas renewable or "green" hydrogen is derived from renewable energy. Low-carbon hydrogen is now less expensive than renewable hydrogen and can be used as a transition technology to speed up PtL scaling.
  • Even though low-carbon hydrogen lowered the production costs, generating PtL requires absorbing CO2 twice: once during the hydrogen generation process and again during the fuel synthesis stage. Renewable hydrogen can be prioritized for long-term PtL production because this is inefficient.
  • Rapid R&D and faster-than-anticipated cost declines for renewable energy are required today and in the future to reduce PtL input prices to less than USD 15 to USD 20 per MWh. Annual PtL jet fuel output is predicted to expand from roughly 100,000 tons announced through 2025 to ten million to 105 million tons by 2035, representing a potential thousand-fold increase within a decade. Significant capital will be necessary to meet PtL demand-possibly USD 3 trillion to USD 4 trillion between 2022 and 2050. Because of the capital intensity of PtL, investors will undoubtedly play a significant role in production expansion.
  • According to British Petroleum (BP), in 2021, global oil consumption reached 94.1 million barrels per day. There was an increase of more than 6% over the previous year when worldwide oil consumption fell due to pandemic-enforced mobility limitations, which reduced transportation fuel demand.
  • All the above factors will likely support the demand for the studied market in the coming years.

Asia-Pacific Region to Dominate the Market

  • Asia-Pacific dominates the syngas derivatives market in terms of market share and market revenue. The region is set to continue its dominance over the forecast period.
  • Due to the significant availability of coal and natural gas reserves, as well as expanding urbanization, infrastructure development, and discoveries in the oil and gas industry, Asia Pacific will likely maintain its leadership position in the following years.
  • According to CHEManager (Chemdata International), China was the world's third-largest chemical exporting nation in 2021, accounting for 9.6% of worldwide chemical exports in terms of value.
  • According to US Geological Survey, the global ammonia output in 2021 is around 150 million metric tons. East Asia produced the most ammonia, with about 64.6 million metric tons. China is the world's biggest ammonia producer. The Asian country's ammonia production was anticipated to be over 39 million metric tons of contained nitrogen in 2021. It was followed by Russia, the United States, and India, all of which produced more than 10 million tons.
  • According to Annual International Trade Statistics by Country (HS), the value of imports of commodity category 290511, "Methanol (methyl alcohol)," totaled USD 3.86 billion in 2021. Sales of commodity category 290511 "Methanol (methyl alcohol)" increased by USD 1.17 billion. In 2020, the value of commodity group 290511 imports to China equaled USD 2.68 billion.
  • China is currently the world's most significant hydrogen producer, with an annual output of over 33 million metric tons. On 23 March 2022, Chinese authorities issued a plan for the growth of hydrogen energy for 2021-2035 as the government works toward its carbon peaking and neutrality goals.
  • According to a plan jointly released by the National Development and Reform Commission and the National Energy Administration, China will implement a relatively complete hydrogen energy industry development system by 2025. It is combined with the innovation capability significantly improved, and the core technologies and manufacturing processes essentially mastered.
  • Annual hydrogen production from renewable energy is estimated to reach 100,000 to 200,000 metric tons by 2025, becoming a significant element of new hydrogen energy consumption and allowing for a 1 million to 2 million metric tons decrease in carbon dioxide emissions annually.
  • China is aiming for an acceptable and orderly industrial architecture by 2030, as well as widespread usage of hydrogen generation from renewable energy, to provide firm support for the carbon peaking goal.
  • According to the plan, by 2035, the share of hydrogen produced from renewable energy in terminal energy consumption will have increased dramatically, supporting the country's green energy revolution.
  • Hydrogen is a secondary energy source that usually requires primary energy input to be created on a large scale. Hydrogen can be gray, blue, or green depending on its source, and green hydrogen is the only form created in a climate-neutral manner that could cut emissions.
  • As a result, all the causes above are projected to increase demand for the syngas derivatives market in the Asia-Pacific region in the future.

Syngas Derivatives Market Competitor Analysis

The Syngas Derivatives Market is partially fragmented in nature. Some major manufacturers in the market include BASF SE, CF Industries Holdings, Inc., Dow Inc., Shell PLC, SynGas Technology, LLC, and others (in no particular order).

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Drivers
    • 4.1.1 Growing Environmental Constraints, as well as the Emergence of Clean Technologies
    • 4.1.2 Initiatives in Syngas and Derivatives R&D
  • 4.2 Restraints
    • 4.2.1 Substantial Capital Costs and the Time Required to Build an Operating Plant with Cutting-Edge Gasification Techniques
    • 4.2.2 Other Restraints
  • 4.3 Industry Value-Chain Analysis
  • 4.4 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.4.1 Bargaining Power of Suppliers
    • 4.4.2 Bargaining Power of Buyers
    • 4.4.3 Threat of New Entrants
    • 4.4.4 Threat of Substitute Products and Services
    • 4.4.5 Degree of Competition

5 MARKET SEGMENTATION

  • 5.1 Primary Constituents
    • 5.1.1 Methanol
    • 5.1.2 Dimethyl Ether
    • 5.1.3 Ammonia
    • 5.1.4 Oxo Chemicals
    • 5.1.5 Hydrogen
  • 5.2 Derivatives
    • 5.2.1 Formaldehyde
    • 5.2.2 Methanol-to-olefins (MTO)/Methanol-to-Propylene (MTP)
    • 5.2.3 Methyl Tert-butyl Ether (MTBE)/ Tertiary Amyl Methyl Ether (TAME)
    • 5.2.4 Dimethyl Terephthalate (DMT)
    • 5.2.5 Acetic Acid
    • 5.2.6 Dimethyl Ether (DME)
    • 5.2.7 Methyl Methacrylate (MMA)
  • 5.3 Application
    • 5.3.1 Aerosol Products
    • 5.3.2 LPG Blending
    • 5.3.3 Power Generation
    • 5.3.4 Transportation Fuel
    • 5.3.5 Acrylates
    • 5.3.6 Glycol Ethers
    • 5.3.7 Acetates
    • 5.3.8 Lubes
    • 5.3.9 Resins
    • 5.3.10 Other Applications
  • 5.4 End-User Industry
    • 5.4.1 Agriculture
    • 5.4.2 Textiles
    • 5.4.3 Mining
    • 5.4.4 Pharmaceutical
    • 5.4.5 Refrigeration
    • 5.4.6 Chemicals
    • 5.4.7 Transportation
    • 5.4.8 Energy
    • 5.4.9 Refining
    • 5.4.10 Welding and Metal Fabrication
    • 5.4.11 Other End-User Industries
  • 5.5 Geography
    • 5.5.1 Asia-Pacific
      • 5.5.1.1 China
      • 5.5.1.2 India
      • 5.5.1.3 Japan
      • 5.5.1.4 South Korea
      • 5.5.1.5 Rest of Asia-Pacific
    • 5.5.2 North America
      • 5.5.2.1 United States
      • 5.5.2.2 Canada
      • 5.5.2.3 Mexico
    • 5.5.3 Europe
      • 5.5.3.1 Germany
      • 5.5.3.2 United Kingdom
      • 5.5.3.3 France
      • 5.5.3.4 Italy
      • 5.5.3.5 Rest of Europe
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle-East
      • 5.5.5.1 South Africa
      • 5.5.5.2 Saudi Arabia
      • 5.5.5.3 Rest of Middle-East

6 COMPETITIVE LANDSCAPE

  • 6.1 Mergers and Acquisitions, Joint Ventures, Collaborations, and Agreements
  • 6.2 Market Ranking Analysis
  • 6.3 Strategies Adopted By Leading Players
  • 6.4 Company Profiles
    • 6.4.1 Air Liquide Global E&C Solutions
    • 6.4.2 Air Products and Chemicals, Inc.
    • 6.4.3 BASF SE
    • 6.4.4 CF Industries Holdings, Inc.
    • 6.4.5 Chiyoda Corporation
    • 6.4.6 Dow Inc.
    • 6.4.7 General Electric Company
    • 6.4.8 Haldor Topsoe A/S
    • 6.4.9 Linde AG (The Linde Group)
    • 6.4.10 Methanex Corporation
    • 6.4.11 Nutrien Ltd.
    • 6.4.12 Sasol Limited
    • 6.4.13 Shell PLC
    • 6.4.14 Siemens AG
    • 6.4.15 SynGas Technology, LLC
    • 6.4.16 Synthesis Energy Systems, Inc
    • 6.4.17 TechnipFMC PLC

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

  • 7.1 Rapid Urbanization, Infrastructure Development, and Discoveries in the Oil & Gas Industry