市场调查报告书
商品编码
1296109
核聚变商业化:仍然存在巨大障碍Significant Barriers Remain to Commercializing Nuclear Fusion |
世界上一些地区正在努力製定明确的战略,以大幅减少二氧化碳排放,同时为持续的经济增长提供充足的能源供应。 世界气象组织目前预测,到21世纪末,全球气温将上升3至5摄氏度。 预测表明,仅靠当前的努力还不足以实现全球变暖 2.0度C 的目标或更雄心勃勃的 1.5度C 的目标。
核聚变是取之不尽,用之不竭的能源,也是一种潜在的解决方案。 儘管世界各地为使这项技术成为现实做出了许多努力,但它在经济上或商业上尚不可行。 即使前景光明的国际热核实验反应堆(ITER)项目取得成功,考虑到反应堆的净能量增益和平准化电力成本(LCOE),也不能保证该技术在经济上具有竞争力。 为了使融合具有竞争力,它必须实现电网平价。 这意味着LCOE需要等于或低于电网电价。
本报告分析了核聚变技术实际应用中需要克服的各种问题,最新的产业突破,经过多年的努力仍未实现聚变的原因,需要采取的主要措施(包括对聚变产业的财政支持)通过私人和公共资金)和主要利益相关者 我们将彙编和提供信息,例如重要建议
前言
背景
建议
核聚变:能源转型领域的兴趣日益浓厚
聚变反应:开发了 4 种不同的方法
磁约束法
惯性约束法
磁化靶核聚变
混合融合
数十年研究后的最新突破
儘管做出了努力,聚变在商业上尚不可行
聚变能源:需要迅速采取行动以实现净零目标
利用公共和私人资金启动聚变研究与开发
公共资金
儘管具有潜力,聚变能源仍面临多方面的挑战
克服技术挑战:成功融合的关键
投资者视角
监管问题可能会缓解以促进融合
核聚变行业:需要对公众进行核聚变教育
监管机构:需要考虑裂变和聚变设施之间的差异
Some world regions are struggling to develop clear strategies for achieving substantial CO2 emissions reductions while providing energy supplies sufficient for sustained economic growth. The World Meteorological Organization currently predicts that global temperatures will increase by 3° C to 5° C by the end of the 21st century. This projection suggests that current efforts may not be enough to achieve either a 2.0‑degree global climate target, or the more ambitious 1.5-degree goal.
Nuclear fusion offers an inexhaustible supply of energy and could be a solution. Enormous global effort is going into making the technology a reality, but it is still not yet economically feasible and has not been commercialized. Even if the promising International Thermonuclear Experimental Reactor (ITER) project is successful, the technology is not assured of being economically competitive, considering the reactors net energy gain and the levelized cost of electricity (LCOE). For nuclear fusion to be competitive, it must reach grid parity, which only happens when its LCOE is equal to or below the price of power on the grid.
This Guidehouse Insights Strategy Insight reviews the significance of nuclear fusion in tackling the growing demand for green energy. It explains the differences between nuclear fission and fusion and looks at various technology approaches, recent breakthroughs in the fusion industry, and its persistent lack of traction, despite decades of effort. The study also examines the industry's financial support from private and public funding, its major challenges, and offers key recommendations for stakeholders.
Spark
Context
Recommendations
Nuclear Fusion Gains Traction in the Energy Transition
Four Approaches Have Been Developed for Nuclear Fusion Reactions
Magnetic Confinement
Inertial Confinement
Magnetized Target Fusion
Hybrid Fusion
Recent Breakthroughs Came after Decades of Research
Despite Efforts, Nuclear Fusion Is Still Not Yet Commercially Viable
Fusion Energy Must Move Quickly to Aid Net-Zero Goals
Public and Private Funding Vitalized Nuclear Fusion R&D
Public Funding
Despite Its Potential, Fusion Energy Faces Challenges on Multiple Fronts
Overcoming the Technical Challenges Is Key to Nuclear Fusion's Success
Investors' Perspectives
Regulatory Concerns Could Be Loosened to Encourage Nuclear Fusion
The Fusion Industry Must Educate the Public about Nuclear Fusion
Regulators Must Consider the Differences between Fission and Fusion Facilities
Advantages and Disadvantages of Nuclear Fission
Nuclear Fusion
Reactor Energy Gain in Nuclear Fusion