新量子系统超低损失·高精度电容器,电阻器,感应器:全球市场,技术,机会(2025年~2030年)
市场调查报告书
商品编码
1799622

新量子系统超低损失·高精度电容器,电阻器,感应器:全球市场,技术,机会(2025年~2030年)

Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030

出版日期: | 出版商: Paumanok Publications, Inc. | 英文 133 Pages; 17 Tables and Graphs | 商品交期: 最快1-2个工作天内

价格
简介目录

摘要整理

本报告探讨了专为量子运算应用而设计的被动电子元件市场,并提供了有关量子运算单元 (QPU) 和量子系统基础设施中电容器、电阻器和电感器的独特要求、新兴技术和机会的资讯。

研究亮点

突破性市场分析

  • 首个针对量子计算被动元件的全面研究
  • 超低损耗介电材料及其精密製造需求分析
  • 低温工作条件及其对元件性能影响的详细研究
  • 量子级被动元件市场规模及预测(截至 2030 年)

技术详情

  • 超低损耗电容器:蓝宝石、硅和先进陶瓷基板
  • 精密电阻:量子极限杂讯特性与温度係数
  • 高 Q 值电感器:超导材料与磁场抗扰度
  • 新材质:石墨烯、钻石基板、特殊电介质等更多

市场情报

  • 全球量子运算硬体投资及其对组件需求的影响
  • 量子级材料的供应链分析与製造能力
  • 进入量子领域的专业组件製造商的竞争格局
  • 量子子组件(包括量子处理器和低温系统)的终端市场细分

主要市场调查结果

市场规模与成长预测

  • 全球量子被动元件市场
  • 预计2030年将维持强劲成长
  • 电容器:最大的细分市场
  • 北美采用率领先,其次是欧洲和亚太地区

分析的用途

QPU

  • 超导量子位元系统(IBM、Google、Rigetti)
  • 离子阱系统(IonQ、霍尼韦尔)
  • 光子量子处理器
  • 中性原子量子计算机

量子基础设施

  • 低温系统
  • 量子控制电子元件
  • 互连装置
  • 读出系统
  • 电源
  • 其他元件

新兴市场:被动元件类别

新量子电容器的市场(2025年~2030年)

  • 陶瓷微波电容器
  • 塑胶薄膜电容器
  • 硅电容器
  • 六方氮化硼电容器
  • 聚合物钽电容器
  • 聚合物铝电解电容器
  • 氧化铌电容器
  • 钻石/蓝宝石电容器
  • 量子处理器与低温系统的新技术;新型电介质的开发

新量子电阻器的市场(2025年~2030年)

  • 镍铬薄膜和箔电阻器
  • 氮化钽薄膜电阻器
  • 线绕电阻器
  • 厚膜 (RuO2) 晶片和网络
  • 薄膜整合式被动元件
  • 量子处理器与低温系统的新型电阻器开发

新量子感应器的市场(2025年~2030年)

  • 高可靠性铁氧体珠
  • 高可靠性陶瓷晶片线圈
  • 陶瓷粉笔
  • 量子系统新磁技术

地区市场分析(2025年~2030年)

北美

  • IBM、Google和新创公司引领量子运算投资
  • 国家政府透过量子计画提供资金
  • 已建立先进电子元件供应链

欧洲

  • 量子旗舰计画推动元件开发
  • 强大的材料科学与製造能力
  • 专注于量子通讯和量子感测应用

亚太地区

  • 来自中国、日本和韩国
  • 规模化生产优势
  • 拓展量子运算研究策略

竞争情形的分析

市场领导者

  • 供应量子元件的现有和新兴电容器、电阻器和电感器供应商
  • 专业低温元件製造商

新兴企业

  • 开发内部组件的量子运算公司 科技硬体公司
  • 颠覆性科技新创公司
  • 获得突破性材料授权的研究机构

被动元件技术的未满足需求

  • 电容器的机会:量子系统和sub-assembly的各电介质(2025年~2030年)
  • 电阻器的机会:量子系统和sub-assembly的类别(2025年~2030年)
  • 感应器的机会:量子系统和sub-assembly的类别(2025年~2030年)

预测 (2025-2030)

我们全面的预测模型包括:

  • 量子计算硬体预测 (2025-2030)
  • 各量子系统组件需求分析
  • 新技术价格弹性模型
  • 特定于量子应用的技术采用曲线
  • 量子电容器市场预测 (2025-2030)
  • 量子电阻器市场预测 (2025-2030)
  • 量子感测器市场预测 (2025-2030)
  • 评估未满足的需求
  • 对超过 45 家量子级被动元件供应商的评估
  • 按元件类型、应用程式和地区划分的 5 年预测
简介目录
Product Code: ISBN: 1-893211-38-X (QPU2025)

Executive Summary

The "Ultra-Low Loss and Precision Capacitors, Resistors and Inductors For Emerging Quantum Systems: World Markets, Technologies and Opportunities: 2025-2030", is a groundbreaking market study on passive electronic components specifically engineered for quantum computing applications. This comprehensive 133 page analysis represents the first dedicated market research examining the specialized requirements, emerging technologies, and commercial opportunities for capacitors, resistors, and inductors in quantum processing units (QPUs) and quantum systems infrastructure.

Study Highlights

Revolutionary Market Analysis

  • First-of-its-kind comprehensive study dedicated to passive components in quantum computing
  • Analysis of ultra-low loss dielectric materials and precision manufacturing requirements
  • Detailed examination of cryogenic operating conditions and their impact on component performance
  • Market sizing and forecasting for quantum-grade passive components through 2030

Technology Deep Dive

  • Ultra-Low Loss Capacitors: Sapphire, silicon, and advanced ceramic substrates
  • Precision Resistors: Quantum-limited noise characteristics and temperature coefficients
  • High-Q Inductors: Superconducting materials and magnetic field immunity
  • Emerging materials including graphene, diamond substrates, and exotic dielectrics

Market Intelligence

  • Global quantum computing hardware investments and their impact on component demand
  • Supply chain analysis for quantum-grade materials and manufacturing capabilities
  • Competitive landscape of specialized component manufacturers entering the quantum space
  • End-market segmentation across quantum sub-assemblies including QPU and Cryogenic systems.

Key Market Findings

Market Size & Growth Projections

  • Global quantum passive components market
  • Projected robust growth through 2030
  • Capacitors representing the largest segment
  • North America leading adoption, followed by Europe and Asia-Pacific regions

Target Applications Analyzed

Quantum Processing Units (QPUs)

  • Superconducting qubit systems (IBM, Google, Rigetti)
  • Trapped ion systems (IonQ, Honeywell)
  • Photonic quantum processors
  • Neutral atom quantum computers

Quantum Infrastructure

  • Cryogenic systems
  • Quantum control electronics
  • Interconnects
  • Read-Out Systems
  • Power Supplies
  • Other Sub-assemblies

Emerging Markets by Passive Component Type

Emerging Quantum Capacitor Markets: 2025-2030

  • Ceramic Microwave Capacitors
  • Plastic Film Capacitors
  • Silicon Capacitors
  • Hexagonal Boron Nitride Capacitors
  • Polymer Tantalum Capacitors
  • Polymer Aluminum Capacitors
  • Niobium Oxide Capacitors
  • Diamond/Sapphire Capacitors
  • New Dielectric Development for QPU and Cryogenic Systems

Emerging Quantum Resistor Markets: 2025-2030

  • Nichrome Film and Foil Resistors
  • Tantalum Nitride Thin Film Resistors
  • Wirewound Resistors
  • Thick Film (Ru02) Chips and Networks
  • Thin Film Integrated Passive Devices
  • New Resistor Development for QPU and Cryogenic Systems

Emerging Quantum Inductor Markets: 2025-2030

  • High Reliability Ferrite Bead
  • High Reliability Ceramic Chip Coil
  • Ceramic Chokes
  • Emerging Magnetic Technologies for Quantum Systems

Regional Market Analysis: 2025-2030

North America

  • Leading quantum computing investments from IBM, Google, and startups
  • Government funding through National Quantum Initiative
  • Established supply chain for advanced electronic components

Europe

  • Quantum Flagship program driving component development
  • Strong materials science and manufacturing capabilities
  • Focus on quantum communication and sensing applications

Asia-Pacific

  • Significant investments from China, Japan, and South Korea
  • Manufacturing scale advantages for volume production
  • Growing quantum computing research initiatives

Competitive Landscape Analysis

Market Leaders

  • Traditional and emerging capacitor, resistor and inductor vendors supplying Quantum Components
  • Specialized cryogenic component manufacturers

Emerging Players

  • Quantum computing hardware companies developing in-house components
  • Startup companies with disruptive technologies
  • Research institutions licensing breakthrough materials

Unmet Needs in Passive Component Technology

  • Opportunities for Capacitors by Dielectric in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Resistors by Type in Quantum Systems and Sub-Assemblies: 2025-2030
  • Opportunities for Inductors by Type in Quantum Systems and Sub-Assemblies: 2025-2030

Forecasting 2025-2030

Our comprehensive forecasting model incorporates:

  • Quantum computing hardware forecasts: 2025-2030
  • Component requirement per quantum system analysis
  • Price elasticity modeling for emerging technologies
  • Technology adoption curves specific to quantum applications
  • Quantum Capacitor Market Forecasts: 2025-2030
  • Quantum Resistor Market Forecasts: 2025-2030
  • Quantum Inductor Market Forecasts: 2025-2030
  • Unmet Needs Assessment
  • 45+ Vendors Reviewed for Quantum Grade Passive Components
  • 5-year forecasts by component type, application, and region

Why This Study Matters

As quantum computing transitions from academic research to commercial reality, the demand for specialized passive components is creating entirely new market opportunities. Traditional electronic components fail to meet the extreme performance requirements of quantum systems, driving the need for revolutionary approaches to capacitor, resistor, and inductor design and manufacturing.

This study provides the critical market intelligence needed by:

  • Component manufacturers evaluating quantum market entry strategies
  • Quantum computing companies seeking reliable component suppliers
  • Investors assessing opportunities in the quantum supply chain
  • Materials suppliers understanding quantum-grade requirements
  • Government agencies planning quantum infrastructure investments