封面
市场调查报告书
商品编码
1284260

到 2028 年的增材製造市场预测——按材料类型(合金、陶瓷、金属、塑料、其他材料类型)、技术、软件、应用、最终用户和地区进行的全球分析

Additive Manufacturing Market Forecasts to 2028 - Global Analysis By Material Type (Alloys, Ceramics, Metals, Plastics and Other Material Types), Technology, Software, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球增材製造市场预计将在 2022 年达到 169 亿美元,并在 2028 年达到 713 亿美元,复合年增长率为 27.1%。

减材製造从大量材料中去除多余的材料,这与增材製造不同。 在工业界,术语“增材製造”通常指的是 3D 打印。 使用3D打印机和3D打印机软件,指的是3D文件,是一种通过分层材料来创建模型对象的方法。 根据应用,从各种技术中选择合适的技术。

根据 Sculpteo 的一项调查,41% 的公司确认增材製造可以帮助他们更高效地完成任务,同时改进流程。 受近期生物基材料兴起的推动,59% 的用户希望使用更具可持续性的材料。

市场动态:

驱动程序

增材製造优势

由于增材製造产品的性能,航空航天是使用增材製造产品的行业之一,轻型和环保型增材製造材料被用于飞机部件。 在快速发展的医疗领域,增材製造产品的使用使医生、患者和研究机构都受益匪浅。

约束

缺乏软件效率

使用激光粉末床熔合进行增材製造,可以製造出以前昂贵或难以製造的复杂几何形状。 然而,激光粉末床熔合法也有其缺点。 它们包括难以拆除的支撑结构和薄壁、高纵横比的部件,这些部件在施工过程中可能会破裂,从而限制市场扩张。

机会

对轻量化零件的需求不断增长

汽车和航空航天行业必须满足各种相互关联的技术和财务目标,例如功能性能、缩短交货时间、轻量化设计、成本控制以及安全关键部件的可用性。我有。 为满足需求,需要直接提高经济技术性能,如降低油耗、提高技术性能、减轻结构重量等,对,并增加收益。

威胁

设备成本高

根据所需的应用,增材製造设备的资本成本很高。 此外,引入增材製造的一个障碍是缺乏合格的专业人员。 这些因素鼓励最终用户继续使用传统机器。 此外,各国对新技术的采用率较低。 结果,这些限制阻碍了市场扩张。

COVID-19 的影响:

COVID-19 在多个应用中的爆发阻碍了增材製造的发展。 世界各国政府都采取了封锁措施来阻止这种疾病的传播。 这导致了供应和运输限制、基础设施延误以及製造业务放缓。 因此,增材製造在世界范围内越来越不受欢迎。 这些参与者的製造和供应链设施遍布多个国家。 增材製造材料的需求和供应链受到大流行的巨大影响。

立体光刻细分市场预计在预测期内将成为最大的细分市场

据估计,立体光刻领域因其易于操作而获得有利可图的增长。 最古老和最广泛使用的印刷技术之一是立体光刻。 还有许多其他优点可以促进这项技术的使用。 然而,技术的进步以及研究人员和行业专业人士正在进行的深入研究和开发工作已经为各种有效和可靠的技术创造了希望。

预计原型设计部分在预测期内的复合年增长率最高。

由于其优势,原型製造领域有望在预测期内以最快的复合年增长率增长。 原型技术被广泛应用于各个业务领域和行业。 原型製作是汽车、航空航天和国防公司用来製造精密零件、组件和復杂系统的常用技术。 原型製作使製造商能够创建可靠的最终产品并提高准确性。

市场份额最高的地区

由于製造业扩张和人口增长,预计亚太地区在预测期内将占据最大的市场份额。 在该地区,业务随着新兴国家的经济增长而扩大。 航空航天工业使用增材製造来製造复杂的发动机部件。 随着政府重点推广增材製造在工业中的应用,预计该市场将会增长。

复合年增长率最高的地区:

由于国际公司的投资增加,预计北美在预测期内的复合年增长率最高。 由于技术进步、跨行业引入机器学习和人工智能等新方法以增强自动化以及研发资源的有效利用,预计该市场在预测期内也将增长。

主要发展:

2021 年 11 月,Optomec Inc. 宣布推出两款新的增材製造机器,专用于大规模生产并配备机器人零件处理功能。

2021年11月,Stratasys Ltd.宣布丹麦製鞋公司ECCO将采用Stratasys Origin one 3D打印技术,使用汉高乐泰树脂材料製成的3D打印模具和鞋楦进行工艺测试,宣布提供abstract shoe标本进行早期分析,加快产品开发。

我们的报告提供了什么

  • 区域和国家级细分市场的市场份额评估
  • 向新进入者提出战略建议
  • 2020、2021、2022、2025 和 2028 年的综合市场数据
  • 市场趋势(驱动因素、制约因素、机会、威胁、挑战、投资机会、建议)
  • 根据市场预测在关键业务领域提出战略建议
  • 竞争格局映射关键共同趋势。
  • 公司简介,包括详细的战略、财务状况和近期发展
  • 映射最新技术进步的供应链趋势

免费定制优惠:

购买此报告的客户将获得以下免费定制选项之一:

  • 公司简介
    • 其他市场参与者的综合概况(最多 3 家公司)
    • 主要参与者的 SWOT 分析(最多 3 家公司)
  • 区域细分
    • 根据客户的要求对主要国家/地区的市场估计/预测/复合年增长率(注意:基于可行性检查)。
  • 竞争基准
    • 根据产品组合、区域影响力和战略联盟对主要参与者进行基准测试

内容

第 1 章执行摘要

第二章前言

  • 概览
  • 利益相关者
  • 调查范围
  • 调查方法
    • 数据挖掘
    • 数据分析
    • 数据验证
    • 研究方法
  • 调查来源
    • 主要研究来源
    • 二级研究来源
    • 假设

第三章市场趋势分析

  • 司机
  • 约束因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第 4 章波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第 5 章全球增材製造市场:按材料类型分类

  • 合金
  • 陶瓷
  • 金属
  • 塑料
  • 其他材料类型

第 6 章。全球增材製造市场:按技术分类

  • 选择性激光烧结
  • 立体光刻
  • 多喷打印
  • 金属激光直接烧结
  • 电子束熔化
  • 熔融沈积建模
  • 数字光处理
  • 喷墨打印
  • 激光金属沉积
  • 增材製造生产
  • 其他技术

第 7 章。全球增材製造市场:按软件分类

  • 检查软件
  • 扫描软件
  • 打印机软件
  • 设计软件
  • 其他软件

第 8 章。全球增材製造市场:按应用

  • 工具
  • 原型製作
  • 功能部件
  • 其他用途

第 9 章。全球增材製造市场:按最终用户分类

  • 航空航天
  • 建筑学
  • 汽车
  • 消费品
  • 防守
  • 医疗保健
  • 工业
  • 其他最终用户

第 10 章全球增材製造市场:按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 意大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳大利亚
    • 新西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙特阿拉伯
    • 阿拉伯联合酋长国
    • 卡塔尔
    • 南非
    • 其他中东和非洲地区

第11章主要发展

  • 合同、伙伴关係、协作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章公司简介

  • Nano Dimension Ltd.
  • EnvisionTEC GmbH
  • Materialise NV
  • Hewlett-Packard Development Co., L.P.
  • EOS GmbH
  • Arcam AB
  • General Electric Co.
  • 3D Systems Corporation
  • SLM Solutions Group AG
  • ExOne Co.
  • Stratasys Ltd.
  • Optomec Inc.
  • Mcor Technologies Ltd
  • Optomec Inc.
  • Materialise NV
Product Code: SMRC23092

According to Stratistics MRC, the Global Additive Manufacturing Market is accounted for $16.9 billion in 2022 and is expected to reach $71.3 billion by 2028 growing at a CAGR of 27.1% during the forecast period. The subtractive method of manufacture, which calls for removing extra material from a block of material, differs from additive manufacturing. In industrial settings, the term "additive manufacturing" typically refers to 3D printing. Using a 3D printer and 3D printer software, additive manufacturing entails adding material layer by layer to create an object while referring to a three-dimensional file. Depending on the application, a suitable technology for additive manufacturing is chosen from the pool of options.

According to a survey by Sculpteo, 41% of the companies confirm that Additive Manufacturing has helped them complete their task more efficiently while improvising their process. 59% of users desire to use more sustainable materials, driven by the increasing number of bio-based materials in recent years.

Market Dynamics:

Driver:

Advantages offered by additive manufacturing

Aerospace was one of the industries that used additive manufacturing products for their performance, and lightweight, environmentally resilient additive manufacturing materials are used for aeroplane parts. Doctors, patients, and research institutes all benefit greatly from the use of additive manufacturing products in the quickly developing medical sector.

Restraint:

Lack of software efficiency

Complex and complicated shapes can now be built utilising additive manufacturing with the laser powder-bed fusion technique that was previously prohibitively expensive or difficult to produce. However, there are drawbacks to laser powder-bed fusion. It contains support structures that are hard to remove and pieces with thin walls and high aspect ratios that could fail during construction, which could limit market expansion.

Opportunity:

Increasing demand for lightweight components

The automotive and aerospace industries need to achieve a wide range of interrelated technical and financial goals, including functional performance, lead time reduction, lightweight design, cost control, and supply of safety-critical components. In order to satisfy demand, reduce fuel consumption, improve technical performance, and make lighter structures, which are all directly related to improving economic and technical performance, the airline industry must carry more payloads, which increases revenue.

Threat:

High costs of the equipment

Based on the required applications, the capital cost of an additive manufacturing equipment is expensive. Additionally, a barrier to the adoption of additive manufacturing is a lack of qualified specialists. These elements have encouraged end users to continue using traditional machines. In addition, the countries have a poor adoption rate of new technologies. As a result, these constraints are impeding the market's expansion.

COVID-19 Impact:

The desire for additive manufacturing is being hampered by the COVID-19 outbreak in several applications. Lockdown measures have been implemented by governments in many different nations around the world to stop the disease's spread. As a result, supply and transportation constraints, a delay in infrastructure development, and a slowdown in manufacturing operations have all occurred. As a result, additive manufacturing is becoming less popular all over the world. These players' manufacturing and supply chain facilities are dispersed throughout several nations. The demand and supply chain for additive manufacturing materials have been significantly impacted by the pandemic.

The stereolithography segment is expected to be the largest during the forecast period

The stereolithography segment is estimated to have a lucrative growth, due to ease of operations. One of the earliest and most widely used printing techniques is stereolithography. There are a number of other benefits that are promoting the use of the technology. However, technological advancements and the intensive R&D initiatives being undertaken by researchers and industry experts are creating prospects for a number of different effective and dependable technologies.

The prototyping segment is expected to have the highest CAGR during the forecast period

The prototyping segment is anticipated to witness the fastest CAGR growth during the forecast period, due to its advantages. The prototype technique is widely employed in a variety of business sectors and industries. Prototyping is a common technique used by companies in the automotive, aerospace, and defence sectors to manufacture exact parts, components, and intricate systems. Manufacturers can build trustworthy final goods and attain improved precision through prototyping.

Region with Largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the expanding manufacturing sector, as well as growing population. Businesses in the region are expanding as a result of emerging economies like. To produce intricate engine parts, the aerospace industry uses additive manufacturing. The market is expected to grow as a result of the government's emphasis on promoting the use of additive manufacturing in the industrial industry.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to rise in investments by various international companies. Additionally, the market is anticipated to grow during the forecast period due to technological advancements, the implementation of novel approaches like machine learning and artificial intelligence across all industries to enhance automation, and the efficient use of R&D resources.

Key players in the market:

Some of the key players profiled in the Additive Manufacturing Market include Nano Dimension Ltd., EnvisionTEC GmbH, Materialise NV, Hewlett-Packard Development Co., L.P., EOS GmbH, Arcam AB, General Electric Co., 3D Systems Corporation, SLM Solutions Group AG, ExOne Co., Stratasys Ltd., Optomec Inc., Mcor Technologies Ltd, Optomec Inc. and Materialise NV.

Key Developments:

In November 2021, Optomec Inc. has introduced two new additive manufacturing machines that are specifically built for large scale production and include robotic part-handling capabilities.

In November 2021, Stratasys Ltd. announced that ECCO, a Danish shoe company, is using Stratasys Origin one 3D printing technology to speed up product development by providing abstract footwear specimens to be analysed early in the process using 3D printed mould and lasts made with Henkel Loctite resin materials.

Material Types Covered:

  • Alloys
  • Ceramics
  • Metals
  • Plastics
  • Other Material Types

Technologies Covered:

  • Selective Laser Sintering
  • Stereolithography
  • Polyjet Printing
  • Direct Metal Laser Sintering
  • Electron Beam Melting
  • Fuse Deposition Modeling
  • Digital Light Processing
  • Inkjet Printing
  • Laser Metal Deposition
  • Laminated Object Manufacturing
  • Other Technologies

Softwares Covered:

  • Inspection Software
  • Scanning Software
  • Printer Software
  • Design Software
  • Other Softwares

Applications Covered:

  • Tooling
  • Prototyping
  • Functional Parts
  • Other Applications

End Users Covered:

  • Aerospace
  • Architecture
  • Automotive
  • Consumer Goods
  • Defence
  • Healthcare
  • Industrial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Additive Manufacturing Market, By Material Type

  • 5.1 Introduction
  • 5.2 Alloys
  • 5.3 Ceramics
  • 5.4 Metals
  • 5.5 Plastics
  • 5.6 Other Material Types

6 Global Additive Manufacturing Market, By Technology

  • 6.1 Introduction
  • 6.2 Selective Laser Sintering
  • 6.3 Stereolithography
  • 6.4 Polyjet Printing
  • 6.5 Direct Metal Laser Sintering
  • 6.6 Electron Beam Melting
  • 6.7 Fuse Deposition Modeling
  • 6.8 Digital Light Processing
  • 6.9 Inkjet Printing
  • 6.10 Laser Metal Deposition
  • 6.11 Laminated Object Manufacturing
  • 6.12 Other Technologies

7 Global Additive Manufacturing Market, By Software

  • 7.1 Introduction
  • 7.2 Inspection Software
  • 7.3 Scanning Software
  • 7.4 Printer Software
  • 7.5 Design Software
  • 7.6 Other Softwares

8 Global Additive Manufacturing Market, By Application

  • 8.1 Introduction
  • 8.2 Tooling
  • 8.3 Prototyping
  • 8.4 Functional Parts
  • 8.5 Other Applications

9 Global Additive Manufacturing Market, By End User

  • 9.1 Introduction
  • 9.2 Aerospace
  • 9.3 Architecture
  • 9.4 Automotive
  • 9.5 Consumer Goods
  • 9.6 Defence
  • 9.7 Healthcare
  • 9.8 Industrial
  • 9.9 Other End Users

10 Global Additive Manufacturing Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Nano Dimension Ltd.
  • 12.2 EnvisionTEC GmbH
  • 12.3 Materialise NV
  • 12.4 Hewlett-Packard Development Co., L.P.
  • 12.5 EOS GmbH
  • 12.6 Arcam AB
  • 12.7 General Electric Co.
  • 12.8 3D Systems Corporation
  • 12.9 SLM Solutions Group AG
  • 12.10 ExOne Co.
  • 12.11 Stratasys Ltd.
  • 12.12 Optomec Inc.
  • 12.13 Mcor Technologies Ltd
  • 12.14 Optomec Inc.
  • 12.15 Materialise NV

List of Tables

  • Table 1 Global Additive Manufacturing Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Additive Manufacturing Market Outlook, By Material Type (2020-2028) ($MN)
  • Table 3 Global Additive Manufacturing Market Outlook, By Alloys (2020-2028) ($MN)
  • Table 4 Global Additive Manufacturing Market Outlook, By Ceramics (2020-2028) ($MN)
  • Table 5 Global Additive Manufacturing Market Outlook, By Metals (2020-2028) ($MN)
  • Table 6 Global Additive Manufacturing Market Outlook, By Plastics (2020-2028) ($MN)
  • Table 7 Global Additive Manufacturing Market Outlook, By Other Material Types (2020-2028) ($MN)
  • Table 8 Global Additive Manufacturing Market Outlook, By Technology (2020-2028) ($MN)
  • Table 9 Global Additive Manufacturing Market Outlook, By Selective Laser Sintering (2020-2028) ($MN)
  • Table 10 Global Additive Manufacturing Market Outlook, By Stereolithography (2020-2028) ($MN)
  • Table 11 Global Additive Manufacturing Market Outlook, By Polyjet Printing (2020-2028) ($MN)
  • Table 12 Global Additive Manufacturing Market Outlook, By Direct Metal Laser Sintering (2020-2028) ($MN)
  • Table 12 Global Additive Manufacturing Market Outlook, By Electron Beam Melting (2020-2028) ($MN)
  • Table 14 Global Additive Manufacturing Market Outlook, By Fuse Deposition Modeling (2020-2028) ($MN)
  • Table 15 Global Additive Manufacturing Market Outlook, By Digital Light Processing (2020-2028) ($MN)
  • Table 16 Global Additive Manufacturing Market Outlook, By Inkjet Printing (2020-2028) ($MN)
  • Table 17 Global Additive Manufacturing Market Outlook, By Laser Metal Deposition (2020-2028) ($MN)
  • Table 18 Global Additive Manufacturing Market Outlook, By Laminated Object Manufacturing (2020-2028) ($MN)
  • Table 19 Global Additive Manufacturing Market Outlook, By Other Technologies (2020-2028) ($MN)
  • Table 20 Global Additive Manufacturing Market Outlook, By Software (2020-2028) ($MN)
  • Table 21 Global Additive Manufacturing Market Outlook, By Inspection Software (2020-2028) ($MN)
  • Table 22 Global Additive Manufacturing Market Outlook, By Scanning Software (2020-2028) ($MN)
  • Table 23 Global Additive Manufacturing Market Outlook, By Printer Software (2020-2028) ($MN)
  • Table 24 Global Additive Manufacturing Market Outlook, By Design Software (2020-2028) ($MN)
  • Table 25 Global Additive Manufacturing Market Outlook, By Other Softwares (2020-2028) ($MN)
  • Table 26 Global Additive Manufacturing Market Outlook, By Application (2020-2028) ($MN)
  • Table 27 Global Additive Manufacturing Market Outlook, By Tooling (2020-2028) ($MN)
  • Table 28 Global Additive Manufacturing Market Outlook, By Prototyping (2020-2028) ($MN)
  • Table 29 Global Additive Manufacturing Market Outlook, By Functional Parts (2020-2028) ($MN)
  • Table 30 Global Additive Manufacturing Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 31 Global Additive Manufacturing Market Outlook, By End User (2020-2028) ($MN)
  • Table 32 Global Additive Manufacturing Market Outlook, By Aerospace (2020-2028) ($MN)
  • Table 33 Global Additive Manufacturing Market Outlook, By Architecture (2020-2028) ($MN)
  • Table 34 Global Additive Manufacturing Market Outlook, By Automotive (2020-2028) ($MN)
  • Table 35 Global Additive Manufacturing Market Outlook, By Consumer Goods (2020-2028) ($MN)
  • Table 36 Global Additive Manufacturing Market Outlook, By Defence (2020-2028) ($MN)
  • Table 37 Global Additive Manufacturing Market Outlook, By Healthcare (2020-2028) ($MN)
  • Table 38 Global Additive Manufacturing Market Outlook, By Industrial (2020-2028) ($MN)
  • Table 39 Global Additive Manufacturing Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.