封面
市场调查报告书
商品编码
1371898

2030 年 3D 细胞培养市场预测:按产品、用途、最终用户和地区进行的全球分析

3D Cell Culture Market Forecasts to 2030 - Global Analysis By Product (Scaffold-based 3D Cell Cultures, Scaffold-Free 3D Cell Cultures, 3D Bioreactors and 3D Petri Dishes), Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2023 年全球 3D 细胞培养市场规模为 13 亿美元,预计在预测期内年复合成长率为 16.6%,到 ​​2030 年将达到 38 亿美元。

三维(3D)细胞培养是细胞生物学和组织工程领域用于在三维环境中培养和研究细胞的实验技术。在三维 (3D) 细胞培养中,细胞在类似身体组织或器官的实际三维 (3D) 结构的基质或支架内生长。三维细胞培养与人体中复杂的细胞连结和组织结构非常相似,有利于研究细胞活性、药物反应和疾病原因。

根据美国国立卫生研究院的数据,2020 年各种生物工程技术的总投资达 5,646 美元,高于 2019 年的 5,091 美元。这些要素正在扩大美国3D 细胞培养市场。

需要更有效的药物开发和疾病建模

技术的发展、对更接近活体生物体的体外模型的需求不断增加,以及在药物研发、再生医学、癌症研究等方面的应用,都促进了 3D 细胞培养市场的成长。与传统的 2D 细胞培养相比,3D 细胞培养技术为研究细胞行为和组织发育提供了更生理相关的环境。因此,寻求更精确方法进行临床实验的研究人员越来越多地使用它。癌症、心血管疾病和神经系统疾病等慢性疾病的患病不断上升,推动了对 3D 细胞培养辅助下更有效的药物开发和疾病建模的需求。

标准化和复杂性,扩充性有限

建构和维护 3D 细胞培养系统可能比传统的 2D 培养更困难。许多系统和实验室很难保持一致性,这可能会损害结果的再现性和可比性。扩大 3D 细胞培养系统的规模以进行高通量筛选或大规模生产可能很困难。对于药品製造等用途来说,确保大规模的可靠结果是阻碍市场成长的挑战。

专注于创造动物试验的替代

动物实验经常用于製药和科学研究,以探索无法使用简单的二维 (2D) 细胞培养物进行研究的复杂生物过程。另一方面,仅使用动物模型进行药物测试和毒性筛检的伦理和科学限制日益受到重视。欧洲药品管理局 (EMA) 和美国食品药物管理局(FDA) 等法规机构正在推动 3D 细胞培养的开发和部署,用于全球药物筛选和安全评估。例如,透过FDA的预测毒理学路线图,政府鼓励使用尖端的体外模型,例如3D细胞培养,以提高毒性测试的准确性和有效性。更严格的法规要求和更少的动物实验

实施成本高

然而,3D细胞培养的高成本是市场拓展的主要障碍。 3D 细胞培养技术的入门价格可能会因许多变数而异,包括系统复杂性、产量和应用的特殊需求。根据所需的复杂性和功能,这些设备的价格从几千美元到数十万美元不等。由于成本较高,3D细胞培养被大型研究机构和製药公司采用。这可能会限制小型研究团队或单独工作的研究人员使用该技术,从而可能抑制市场。

COVID-19 的影响

研究COVID-19的研究人员如果能够未来性适合3D细胞培养和/或气液界面培养的基质,应该使用治疗方法,有必要探索试管内细胞培养的系统效应机制。这是使用 3D 细胞培养进行 COVID-19 研究的主要理由。这项研究还发现,类器官和球体培养等方法可以提供必要的型态和生化特征,以便在无法进行 2D 培养的情况下支持病毒感染。这些方法也比 2D 培养更准确地再现病毒感染系统。

基于支架的 3D 细胞培养细分领域预计将成为预测期内最大的细分市场

基于支架的 3D 细胞培养部分预计将有良好的成长。支架提供了类似身体组织和器官中存在的细胞外基质(ECM)的结构框架。这种结构支持有助于维持培养物的三维 (3D) 结构,这对于细胞黏合、迁移和组织发育是必需的。借助支架,细胞可以以更有系统的方式与周围环境进行交流和互动。随着研究人员透过改变支架的硬度、孔隙率和成分来调节细胞发育的微环境,现在可以分析细胞-细胞和细胞-基质相互作用以及组织特异性功能。我是。这使得精确改变培养条件以检查不同的细胞反应成为可能,从而推动市场成长。

组织工程领域预计在预测期内年复合成长率最高

组织工程是一个寻求开发用于移植、修復和替换的功能性组织和器官的领域,并且严重依赖3D细胞培养,这就是为什么组织工程领域在预测期内将出现最高的年复合成长率(CAGR )。组织工程的目标是利用 3D 细胞培养的原理在目标组织和器官中重建体内条件。细胞被接种在支架上和支架内,其中许多是来自患者的干细胞或原代细胞。根据所创建的目标器官或组织,这些细胞源自多种组织,在 3D 培养环境中,细胞经历与体内发生的过程非常相似的分化和成熟过程。

比最大的地区

由于美国专注于研发并最近在 3D 细胞培养研究方面进行了大量投资,预计北美将在预测期内占据最大的市场占有率。结果是技术改进。许多美国都是 3D 细胞培养领域的顶尖专利申请者之一。大多数美国候选人都在美国和亚洲进行创新。近年来,美国生物技术产业也得到了大量投资。还需要在试管内模拟人类生理、疾病和药物反应的复杂方面。随着器官移植需求的增加,对 3D 细胞培养的需求也预计会增加。

复合年复合成长率最高的地区:

由于製药和生物技术公司以及学术研究中心等欧洲主要最终用户行业的采用强劲,预计 3D 细胞培养产品的采用将在预测期内实现最高的年复合成长率。这一趋势预计在未来年度将持续下去,但也是由製药和生物技术领域的扩张、基于微流体技术的产品最近的商业化、主要市场参与者的不断增加以及该领域资源的丰富所推动的。由于研究活动,领域这些产品的使用率会更高。

主要进展:

2023 年 9 月,赛默飞世尔科技与全国少数族裔品质论坛合作,为历史上服务不足的社区提供更多获得临床研究的机会。

Thermo Fisher Scientific 于 2023 年 8 月完成对 CorEvitas 的收购。资料透过常规临床护理资料的患者医疗保健利用率和结果数据的收集和使用。

2023 年 6 月,BD 推出新的机器人系统以实现临床流式细胞仪自动化。BD FACSDuet(TM) Premium 样品製备系统利用液体处理机器人来自动化整个样品製备过程。

免费客製化服务:

订阅此报告的客户将收到以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和年复合成长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第1章执行摘要

第2章前言

  • 概述
  • 利害关係人
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 调查来源
    • 主要调查来源
    • 二次调查来源
    • 先决条件

第3章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 产品分析
  • 用途分析
  • 最终用户分析
  • 新兴市场
  • 新型冠状病毒感染疾病(COVID-19)的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第5章全球 3D 细胞培养市场:副产品

  • 基于支架的 3D 细胞培养
    • 精细图案表面微孔板
    • 水凝胶/ECM类似物
    • 天然和合成水凝胶
    • 固体的鹰架
    • 奈米纤维支架
    • 聚合物支架
  • 无支架 3D 细胞培养
    • 悬滴微孔板
    • 微流控 3D 细胞培养
    • 低连接板
    • 利用磁性和生物列印进行 3D 细胞培养
    • 带有 ULA 涂层的球体微孔板
  • 3D生物反应器
  • 3D 培养皿

第6章全球 3D 细胞培养市场:依用途

  • 药物研发
  • 人体组织工程
  • 临床应用
  • 干细胞研究
  • 癌症研究
  • 再生医学
  • 毒性试验
  • 其他用途

第7章全球 3D 细胞培养市场:依最终用户分类

  • 製药和生物技术公司
  • 研究机构
  • 化妆品产业
  • 委託研究
  • 学术机构
  • 其他最终用户

第8章全球 3D 细胞培养市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第9章进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第10章公司简介

  • BiomimX SRL
  • Hurel Corporation
  • CN Bio Innovations
  • InSphero AG
  • Corning Incorporated
  • Lonza AG
  • MIMETAS BV
  • Merck KGaA
  • Thermo Fisher Scientific
  • Nortis Inc.
  • Advanced Biomatrix, Inc.
  • Avantor, Inc.
  • Becton, Dickinson And Company
  • Lena Biosciences
  • Promocell GmbH
  • REPROCELL Inc.
  • Sartorius AG
  • Synthecon Incorporated
  • Tecan Trading AG
  • Nanofiber Solutions
Product Code: SMRC23955

According to Stratistics MRC, the Global 3D Cell Culture Market is accounted for $1.3 billion in 2023 and is expected to reach $3.8 billion by 2030 growing at a CAGR of 16.6% during the forecast period. Three-dimensional (3D) cell culture is a laboratory technique used in the fields of cell biology and tissue engineering to grow and study cells in a three-dimensional environment. In three-dimensional (3D) cell culture, cells are developed within a matrix or scaffold that resembles the bodily tissues' and organs' actual three-dimensional (3D) structures. For the purpose of researching cell activity, medication responses, and disease causes, 3D cell culture is more advantageous since it more closely resembles the intricate cellular connections and tissue structures present in the human body.

According to the National Institute of Health, in 2020, the total investment in various bio engineering technologies amounted to USD 5,646, an increase from USD 5,091 in 2019. These factors have augmented the US 3D cell culture market.

Market Dynamics:

Driver:

The need for more efficient drug development and disease modeling

Technology developments, rising need for in vitro models that more closely resemble in vivo settings, applications in drug discovery, regenerative medicine, and cancer research, among other factors, have all contributed to the growth of the 3D cell culture market. Comparatively to conventional 2D cell culture, 3D cell culture techniques provide a more physiologically appropriate environment for researching cell behavior and tissue development. As a result, usage has grown as researchers look for ways to make their trials more accurate. The need for more efficient drug development and disease modeling, which 3D cell culture can help, has been pushed by the rising prevalence of chronic diseases like cancer, cardiovascular diseases, and neurological disorders, among others.

Restraint:

Standardization and complexity with limited scalability

The creation and upkeep of 3D cell culture systems can be more difficult than conventional 2D culture. It can be difficult to achieve uniformity across many systems and laboratories, which could impede the repeatability and comparability of results. It can be difficult to scale up 3D cell culture systems for high-throughput screening or large-scale production. For applications like medication manufacturing, ensuring reliable results at bigger scales is a challenge which hampers the growth of the market.

Opportunity:

Concentration on creating substitutes for animal experimentation

In order to explore complicated biological processes that cannot be studied with a straightforward two-dimensional (2D) cell culture, animal studies are frequently used in pharmaceutical and scientific research. The ethical and scientific limits of using just animal models for drug testing and toxicity screening, on the other hand, have come under increasing scrutiny. Regulatory agencies including the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA) have pushed for the global development and deployment of 3D cell culture for drug screening and safety assessment. For instance, the government encourages the use of cutting-edge in vitro models, such as 3D cell cultures, to increase the precision and effectiveness of toxicity testing via the FDA's Predictive Toxicology Roadmap. The tightening of regulatory requirements and the decline in animal testing

Threat:

High implementation costs

The expensive expense of 3D cell culture, however, poses a significant obstacle to the market's expansion. The price of implementing 3D cell culture technologies might differ based on a number of variables, including the system's complexity, the volume of production, and the application's particular needs. Depending on the complexity and functionality needed, the price of these instruments can range from a few thousand dollars to several hundred thousand dollars. Because it is expensive, 3D cell culture is used by big research organizations and pharmaceutical firms. This may restrict access to this technology for smaller research teams and lone researchers thus impeding the market.

COVID-19 Impact

In order to evaluate prospective treatments in a physiological milieu, researchers working on COVID-19 who have access to appropriate matrices for 3D cell culture and suitable for air-liquid interface culture must first explore in vitro the mechanisms of the systemic effects of cell cultures. This is the main justification for using 3D cell cultures in COVID-19 research. The study also discovered that methods like organoids and spheroid cultures may provide the morphology and biochemical characteristics necessary to support viral infection in situations where 2D cultures cannot. These methods also reproduce viral infection systems more accurately than 2D cultures can.

The scaffold-based 3D cell cultures segment is expected to be the largest during the forecast period

The scaffold-based 3D cell cultures segment is estimated to have a lucrative growth, as these Scaffolds offer a structural framework that resembles the extracellular matrix (ECM) present in bodily tissues and organs. This structural support aids in preserving the culture's three-dimensional (3D) architecture, which is necessary for cell adhesion, migration, and tissue development. Cells can communicate and interact with their surroundings more systematically thanks to scaffolds. The analysis of cell-cell and cell-matrix interactions as well as tissue-specific functions is made possible by the researchers who can alter the stiffness, porosity, and composition of scaffolds to regulate the microenvironment in which cells develop. This makes it possible to precisely alter the culture conditions in order to investigate diverse cellular reactions which drive the growth of the market.

The tissue engineering segment is expected to have the highest CAGR during the forecast period

The tissue engineering segment is anticipated to witness the highest CAGR growth during the forecast period, as tissue engineering, a discipline that seeks to develop functional tissues and organs for transplantation, repair, and replacement, heavily relies on 3D cell culture. The goal of tissue engineering is to replicate the in vivo conditions of the target tissue or organ using the principles of 3D cell culture. Cells are sown onto or inside the scaffold, frequently stem cells or primary cells from the patient. Depending on the target organ or tissue being created, these cells might come from a variety of tissues and cells go through differentiation and maturation processes in the 3D culture environment that closely resemble those that take place in vivo.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to the United States is concentrating on R&D and has recently made large investments in research into 3D cell culture. The nation has seen technological improvements as a result. Among the top patent applications for the field of 3D cell culture are numerous Americans. The majority of American candidates develop their innovations both here and in Asia. Over the past few years, there have also been large investments made in the bioengineering industry in the United States. In vitro mimicry of complex aspects of human physiology, disease, and drug reactions is also necessary. The need for 3D cell cultures is anticipated to increase as the need for organ transplantation rises in the area.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, owing to the adoption of 3D cell culture products is strong in Europe's key end-user industries, including pharmaceutical and biotechnology firms and academic research centers. Although this trend is anticipated to continue in the upcoming years, moreover the higher uptake of these products due to the expansion of the pharmaceutical and biotechnology sectors, the recent commercialization of products based on microfluidic technology, the growing presence of key market players, and the abundance of research activities in the area.

Key players in the market

Some of the key players profiled in the 3D Cell Culture Market include: BiomimX SRL, Hurel Corporation, CN Bio Innovations, InSphero AG, Corning Incorporated, Lonza AG, MIMETAS BV, Merck KGaA, Thermo Fisher Scientific, Nortis Inc., Advanced Biomatrix, Inc., Avantor, Inc., Becton, Dickinson And Company, Lena Biosciences, Promocell GmbH, REPROCELL Inc., Sartorius AG, Synthecon Incorporated, Tecan Trading AG, Nanofiber Solutions

Key Developments:

In September 2023, Thermo Fisher Scientific and National Minority Quality Forum Collaborate to Make Clinical Research More Accessible to Historically Underserved Communities, the collaboration supports biopharmaceutical and biotech customers in meeting regulatory expectations to enroll and retain patients in clinical trials

In August 2023, Thermo Fisher Scientific Completes Acquisition of CorEvitas Real-world evidence is the collection and use of patient health care utilization and outcomes data gathered through routine clinical care.

In June 2023, BD Launches New Robotic System to Automate Clinical Flow Cytometry. The BD FACSDuet™ Premium Sample Preparation System leverages liquid-handling robotics to automate the entire sample preparation process.

Products Covered:

  • Scaffold-based 3D Cell Cultures
  • Scaffold-Free 3D Cell Cultures
  • 3D Bioreactors
  • 3D Petri Dishes

Applications Covered:

  • Drug Discovery
  • Tissue Engineering
  • Clinical Applications
  • Stem Cell Research
  • Cancer Research
  • Regenerative Medicine
  • Toxicology Testing
  • Other Applications

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Research Institutes
  • Cosmetics Industry
  • Contract Research Laboratories
  • Academic Institutes
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global 3D Cell Culture Market, By Product

  • 5.1 Introduction
  • 5.2 Scaffold-based 3D Cell Cultures
    • 5.2.1 Micropatterned Surface Microplates
    • 5.2.2 Hydrogels/ECM Analogs
    • 5.2.3 Natural & Synthetic Hydrogels
    • 5.2.4 Solid Scaffolds
    • 5.2.5 Nanofiber-Based Scaffolds
    • 5.2.6 Polymeric Scaffolds
  • 5.3 Scaffold-Free 3D Cell Cultures
    • 5.3.1 Hanging Drop Microplates
    • 5.3.2 Microfluidic 3D Cell Culture
    • 5.3.3 Low Attachment Plates
    • 5.3.4 Magnetic & Bioprinted 3D Cell Cultures
    • 5.3.5 Spheroid Microplates with ULA Coating
  • 5.4 3D Bioreactors
  • 5.5 3D Petri Dishes

6 Global 3D Cell Culture Market, By Application

  • 6.1 Introduction
  • 6.2 Drug Discovery
  • 6.3 Tissue Engineering
  • 6.4 Clinical Applications
  • 6.5 Stem Cell Research
  • 6.6 Cancer Research
  • 6.7 Regenerative Medicine
  • 6.8 Toxicology Testing
  • 6.9 Other Applications

7 Global 3D Cell Culture Market, By End User

  • 7.1 Introduction
  • 7.2 Pharmaceutical & Biotechnology Companies
  • 7.3 Research Institutes
  • 7.4 Cosmetics Industry
  • 7.5 Contract Research Laboratories
  • 7.6 Academic Institutes
  • 7.7 Other End Users

8 Global 3D Cell Culture Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BiomimX SRL
  • 10.2 Hurel Corporation
  • 10.3 CN Bio Innovations
  • 10.4 InSphero AG
  • 10.5 Corning Incorporated
  • 10.6 Lonza AG
  • 10.7 MIMETAS BV
  • 10.8 Merck KGaA
  • 10.9 Thermo Fisher Scientific
  • 10.10 Nortis Inc.
  • 10.11 Advanced Biomatrix, Inc.
  • 10.12 Avantor, Inc.
  • 10.13 Becton, Dickinson And Company
  • 10.14 Lena Biosciences
  • 10.15 Promocell GmbH
  • 10.16 REPROCELL Inc.
  • 10.17 Sartorius AG
  • 10.18 Synthecon Incorporated
  • 10.19 Tecan Trading AG
  • 10.20 Nanofiber Solutions

List of Tables

  • Table 1 Global 3D Cell Culture Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global 3D Cell Culture Market Outlook, By Product (2021-2030) ($MN)
  • Table 3 Global 3D Cell Culture Market Outlook, By Scaffold-based 3D Cell Cultures (2021-2030) ($MN)
  • Table 4 Global 3D Cell Culture Market Outlook, By Micropatterned Surface Microplates (2021-2030) ($MN)
  • Table 5 Global 3D Cell Culture Market Outlook, By Hydrogels/ECM Analogs (2021-2030) ($MN)
  • Table 6 Global 3D Cell Culture Market Outlook, By Natural & Synthetic Hydrogels (2021-2030) ($MN)
  • Table 7 Global 3D Cell Culture Market Outlook, By Solid Scaffolds (2021-2030) ($MN)
  • Table 8 Global 3D Cell Culture Market Outlook, By Nanofiber-Based Scaffolds (2021-2030) ($MN)
  • Table 9 Global 3D Cell Culture Market Outlook, By Polymeric Scaffolds (2021-2030) ($MN)
  • Table 10 Global 3D Cell Culture Market Outlook, By Scaffold-Free 3D Cell Cultures (2021-2030) ($MN)
  • Table 11 Global 3D Cell Culture Market Outlook, By Hanging Drop Microplates (2021-2030) ($MN)
  • Table 12 Global 3D Cell Culture Market Outlook, By Microfluidic 3D Cell Culture (2021-2030) ($MN)
  • Table 13 Global 3D Cell Culture Market Outlook, By Low Attachment Plates (2021-2030) ($MN)
  • Table 14 Global 3D Cell Culture Market Outlook, By Magnetic & Bioprinted 3D Cell Cultures (2021-2030) ($MN)
  • Table 15 Global 3D Cell Culture Market Outlook, By Spheroid Microplates with ULA Coating (2021-2030) ($MN)
  • Table 16 Global 3D Cell Culture Market Outlook, By 3D Bioreactors (2021-2030) ($MN)
  • Table 17 Global 3D Cell Culture Market Outlook, By 3D Petri Dishes (2021-2030) ($MN)
  • Table 18 Global 3D Cell Culture Market Outlook, By Application (2021-2030) ($MN)
  • Table 19 Global 3D Cell Culture Market Outlook, By Drug Discovery (2021-2030) ($MN)
  • Table 20 Global 3D Cell Culture Market Outlook, By Tissue Engineering (2021-2030) ($MN)
  • Table 21 Global 3D Cell Culture Market Outlook, By Clinical Applications (2021-2030) ($MN)
  • Table 22 Global 3D Cell Culture Market Outlook, By Stem Cell Research (2021-2030) ($MN)
  • Table 23 Global 3D Cell Culture Market Outlook, By Cancer Research (2021-2030) ($MN)
  • Table 24 Global 3D Cell Culture Market Outlook, By Regenerative Medicine (2021-2030) ($MN)
  • Table 25 Global 3D Cell Culture Market Outlook, By Toxicology Testing (2021-2030) ($MN)
  • Table 26 Global 3D Cell Culture Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 27 Global 3D Cell Culture Market Outlook, By End User (2021-2030) ($MN)
  • Table 28 Global 3D Cell Culture Market Outlook, By Pharmaceutical & Biotechnology Companies (2021-2030) ($MN)
  • Table 29 Global 3D Cell Culture Market Outlook, By Research Institutes (2021-2030) ($MN)
  • Table 30 Global 3D Cell Culture Market Outlook, By Cosmetics Industry (2021-2030) ($MN)
  • Table 31 Global 3D Cell Culture Market Outlook, By Contract Research Laboratories (2021-2030) ($MN)
  • Table 32 Global 3D Cell Culture Market Outlook, By Academic Institutes (2021-2030) ($MN)
  • Table 33 Global 3D Cell Culture Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.