封面
市场调查报告书
商品编码
1476321

至 2030 年浮体式电厂市场预测:按组件、容量、安装深度、技术、应用、最终用户和地区进行的全球分析

Floating Power Plants Market Forecasts to 2030 - Global Analysis By Component, Capacity, Depth Of Installation, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2023 年全球浮体式电厂市场规模为 104.2 亿美元,预测期内复合年增长率为 11.5%,到 2030 年将达到 259.1 亿美元。

浮体式发电厂是创新的能源解决方案,旨在漂浮在海洋、湖泊和河流等水体中时发电。这些发电厂通常使用各种能源来源发电,包括太阳能、风能和燃气涡轮机。它们的放置弹性使它们适合偏远地区或土地有限的地区。

根据泰国发电局2019年的报告,泰国计划在八座水坝上建造浮体式太阳能发电厂。

人口稠密地区可用土地有限

人口稠密地区的可用土地有限,需要创新的发电解决方案。浮体式发电厂利用湖泊、河流和沿海地区等水体来安装能源基础设施,提供了可行的替代方案。这种方法避免了土地稀缺所带来的限制,并能够在传统的基于土地的选项不切实际的地区部署发电设施。因此,浮动发电厂成为满足人口稠密的城市环境中能源需求的重要解决方案。

监管和授权障碍

浮体式电厂的监管和授权障碍通常涉及复杂的环境评估、航行安全考量和管辖权问题。取得施工和营运授权可能非常耗时且成本高昂,涉及多个机构和相关人员。此外,各地区不一致的法规给开发人员带来了挑战,并限制了扩充性和标准化。所有这些因素都阻碍了预测期内的市场成长。

对水资源管理和保护的需求不断增长

浮体式发电厂利用广阔的水域来实现双用途。浮体式发电厂可以在不影响水资源的情况下整合可再生能源发电,并为电力生产提供永续的解决方案。这种协同效应使我们能够解决环境问题,同时满足对清洁能源日益增长的需求。透过有效利用水体,浮体式电厂有助于能源安全和水资源保护,推动其在世界不同地区的采用。

初始资本成本高

由于浮体式平台需要在水体中进行专门的设计、工程、施工和安装发电设备,因此浮体式电厂的初始资本成本较高。这些成本包括场地准备、锚定係统、浮力结构和并联型基础设施。高额前期投资是市场成长的障碍,因为它会赶走潜在投资者并限制计划扩充性。

COVID-19 的影响

COVID-19 大流行影响了浮体式电厂市场,导致供应链中断、计划进度延误和投资活动减少。旅行限制和社交距离措施阻碍了现场施工和维护活动,导致计划延误和成本增加。经济的不确定性和能源需求的减少也降低了投资者的信心并影响了新计画的资金筹措。然而,在全球不确定性的情况下,这种流行病也可能鼓励未来对浮体式电厂的投资,将其作为可靠且适应性强的能源解决方案,而弹性能源基础设施的发展凸显了这一点。

预计深水部分在预测期内将是最大的

深水域领域预计将出现良好的成长。位于深海的浮体式发电厂为能源产出提供了一个有前景的解决方案。这些创新平台利用风能、太阳能和潮汐能等可再生能源,为传统能源提供永续的替代方案。浮体式设计允许在可用土地有限且风力和潮汐潜力较高的地方进行部署。此外,它还透过最大限度地减少栖息地干扰并提供搬迁弹性来减少对环境的影响。

预计救灾部门在预测期内将经历最高的复合年增长率。

预计救灾业务部门在预测期内将以最高的复合年增长率成长。浮体式发电厂通常安装在船舶或驳船上,可以快速转移到灾区,为传统电源中断的地区提供关键的能源基础设施。其机动性允许快速部署,支援紧急应变行动并支援医院、避难所和通讯网路等基本服务。此外,它的弹性能够适应不同的环境,并透过确保动盪时期的可靠电力供应来促进受灾社区的復原和復原力。

比最大的地区

由于快速工业化、电力需求增加以及传统发电基础设施可用土地有限等因素,亚太地区浮体式电厂市场正在显着成长。日本、中国和韩国等国家正在投资浮体式太阳能和风发电工程,以实现可再生能源目标并解决环境问题。此外,该地区广阔的海岸线和众多的内陆水域为部署浮体式电厂提供了充足的机会。

复合年增长率最高的地区:

由于该地区的可再生能源解决方案,预计北美在预测期内将呈现最高的复合年增长率。美国和加拿大等国家正在探索浮体式太阳能和风力发电工程,利用湖泊、水库和沿海地区等大型水域。该市场是由环境考虑、能源安全目标以及对创新发电解决方案的需求所驱动的。此外,政府的支持政策、奖励和技术进步正在推动全部区域对浮体式电厂的投资。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球浮体式电厂市场:依组成部分

  • 浮体式平台
  • 发电装置
  • 电力基础设施
  • 锚定係统
  • 监控/控制系统
  • 其他组件

第六章全球浮体式电厂市场:依容量分类

  • 小规模(最大10MW)
  • 中型(10MW至50MW)
  • 大型(50MW以上)

第七章全球浮体式电站市场:依安装深度

  • 浅水区
  • 深水域

第八章全球浮体式电厂市场:依技术分类

  • 漂浮式太阳能发电厂
  • 浮动式风力发电
  • 浮体式火力发电厂
  • 浮体式核能发电厂
  • 混合动力浮体式电站
  • 透过其他技术

第九章全球浮体式电厂市场:依应用分类

  • 离岸发电
  • 陆上发电
  • 偏远或岛屿地区电气化
  • 应急电源
  • 救灾活动
  • 透过其他用途

第十章全球浮体式电厂市场:依最终用户分类

  • 公共事业
  • 油和气
  • 军事/国防
  • 矿业
  • 通讯/资料中心
  • 其他最终用户

第十一章全球浮体式电厂市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东/非洲

第十二章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章 公司概况

  • Wartsila Corporation
  • Principle Power Inc.
  • Ocean Sun AS
  • Floating Power Plant A/S
  • Ciel & Terre International
  • Vikram Solar Limited
  • Kyocera Corporation
  • DNV GL AS
  • Sungrow Power Supply Corporation
  • Siemens Gamesa Renewable Energy
  • Eco Marine Power Corporation
  • Ideol SA
  • Seabased AB
  • Oceans of Energy BV
  • Masdar
Product Code: SMRC25867

According to Stratistics MRC, the Global Floating Power Plants Market is accounted for $10.42 billion in 2023 and is expected to reach $25.91 billion by 2030 growing at a CAGR of 11.5% during the forecast period. Floating power plants are innovative energy solutions designed to generate electricity while floating on water bodies, such as oceans, lakes, or rivers. These plants typically employ various energy sources, including solar, wind, or gas turbines, to produce electricity. They offer flexibility in deployment, making them suitable for remote areas or regions with limited land availability.

According to reports by Electricity Generating Authority of Thailand 2019, Thailand plans to build floating solar plants across 8 dams.

Market Dynamics:

Driver:

Limited land availability in densely populated areas

Limited land availability in densely populated areas necessitates innovative solutions for power generation. Floating power plants offer a viable alternative by utilizing bodies of water, such as lakes, rivers, or coastal areas, to host energy infrastructure. This approach circumvents the constraints imposed by land scarcity, enabling the deployment of power generation facilities in areas where traditional land-based options are impractical. As a result, floating power plants become an essential solution for meeting energy demands in densely populated urban environments.

Restraint:

Regulatory and permitting hurdles

Regulatory and permitting hurdles in floating power plants often involve complex environmental assessments, navigational safety considerations, and jurisdictional issues. Obtaining permits for construction and operation can be time-consuming and costly due to the involvement of multiple agencies and stakeholders. Additionally, inconsistent regulations across regions pose challenges for developers, limiting scalability and standardization. All these factors hamper the market growth during the forecast period.

Opportunity:

Rising demand for water management and conservation

Floating power plants leverages the vast water surfaces for dual-purpose utilization. Floating power plants enable the integration of renewable energy generation without compromising water resources, offering a sustainable solution for electricity production. This synergy addresses environmental concerns while meeting the growing need for clean energy. By utilizing water bodies effectively, floating power plants contribute to both energy security and water conservation efforts, driving their adoption in various regions globally.

Threat:

High initial capital costs

Floating power plants entail high initial capital costs due to the specialized design, engineering, and construction required for floating platforms, as well as the installation of power generation equipment on water bodies. These costs encompass site preparation, anchoring systems, buoyancy structures, and grid connection infrastructure. The high upfront investment poses a barrier to market growth, as it may deter potential investors and limit the scalability of projects.

Covid-19 Impact

The covid-19 pandemic has impacted the floating power plants market by causing disruptions in supply chains, delaying project timelines, and reducing investment activities. Travel restrictions and social distancing measures have hindered on-site construction and maintenance activities, leading to project delays and increased costs. Economic uncertainties and reduced energy demand have also dampened investor confidence, affecting funding for new projects. However, the pandemic has also highlighted the importance of resilient energy infrastructure, potentially driving future investments in floating power plants as a reliable and adaptable energy solution amidst global uncertainties.

The deep water segment is expected to be the largest during the forecast period

The deep water segment is estimated to have a lucrative growth. Floating power plants, situated in deep waters, offer a promising solution for energy generation. These innovative platforms harness renewable sources like wind, solar, or tidal energy, providing a sustainable alternative to conventional power sources. Floating designs allow deployment in locations with limited land availability and high wind or tidal potential. Additionally, they mitigate environmental impacts by minimizing habitat disturbance and offering flexibility in relocation.

The disaster relief operations segment is expected to have the highest CAGR during the forecast period

The disaster relief operations segment is anticipated to witness the highest CAGR growth during the forecast period. Floating power plants often mounted on ships or barges, can swiftly navigate to disaster zones, offering vital energy infrastructure where traditional power sources are disrupted. Their mobility enables rapid deployment, aiding in emergency response efforts and supporting essential services like hospitals, shelters, and communication networks. Moreover, their flexibility allows for adaptation to diverse environments, ensuring reliable electricity supply during tumultuous times, thereby facilitating the recovery and resilience of communities impacted by disasters.

Region with largest share:

In the Asia Pacific region, the floating power plants market is experiencing significant growth driven by factors such as rapid industrialization, increasing electricity demand, and limited land availability for traditional power generation infrastructure. Countries like Japan, China, and South Korea are investing in floating solar and wind power projects to meet renewable energy targets and address environmental concerns. Moreover, the region's extensive coastlines and numerous inland water bodies provide ample opportunities for deploying floating power plants.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the region's renewable energy solutions. Countries like the United States and Canada are exploring floating solar and wind power projects, leveraging their vast water bodies such as lakes, reservoirs, and coastal areas. The market is driven by environmental concerns, energy security goals, and the need for innovative power generation solutions. Additionally, supportive government policies, incentives, and technological advancements are bolstering investment in floating power plants across the region.

Key players in the market

Some of the key players profiled in the Floating Power Plants Market include Wartsila Corporation, Principle Power Inc., Ocean Sun AS, Floating Power Plant A/S, Ciel & Terre International, Vikram Solar Limited, Kyocera Corporation, DNV GL AS, Sungrow Power Supply Corporation, Siemens Gamesa Renewable Energy, Eco Marine Power Corporation, Ideol S.A., Seabased AB, Oceans of Energy B.V. and Masdar.

Key Developments:

In November 2023, Abu Dhabi clean energy company Masdar and Indonesia's state-owned utility company PLN have inaugurated the 145-megawatt Cirata floating solar plant in Indonesia, the largest in South-east Asia. It is built on a 250-hectare plot of the Cirata reservoir, in the West Java province, and aims to power 50,000 homes and offset 214,000 tonnes of carbon dioxide emissions.

In March 2021, Wartsila installed 'first-of-its-kind' floating battery storage solution in Southeast Asia. The project will use 54MW / 32MWh of battery storage to help a diesel power platform to provide ancillary services.

Components Covered:

  • Floating Platforms
  • Power Generation Units
  • Electrical Infrastructure
  • Anchoring Systems
  • Monitoring & Control Systems
  • Other Components

Capacities Covered:

  • Small-Scale (Up to 10 MW)
  • Medium-Scale (10 MW - 50 MW)
  • Large-Scale (Above 50 MW)

Depth Of Installations Covered:

  • Shallow Water
  • Deep Water

Technologies Covered:

  • Floating Solar Power Plants
  • Floating Wind Power Plants
  • Floating Thermal Power Plants
  • Floating Nuclear Power Plants
  • Hybrid Floating Power Plants
  • Other Technologies

Applications Covered:

  • Offshore Power Generation
  • Onshore Power Generation
  • Remote or Island Electrification
  • Emergency Power Supply
  • Disaster Relief Operations
  • Other Applications

End Users Covered:

  • Utilities
  • Oil & Gas
  • Military & Defense
  • Mining
  • Telecom & Data Centers
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Floating Power Plants Market, By Component

  • 5.1 Introduction
  • 5.2 Floating Platforms
  • 5.3 Power Generation Units
  • 5.4 Electrical Infrastructure
  • 5.5 Anchoring Systems
  • 5.6 Monitoring & Control Systems
  • 5.7 Other Components

6 Global Floating Power Plants Market, By Capacity

  • 6.1 Introduction
  • 6.2 Small-Scale (Up to 10 MW)
  • 6.3 Medium-Scale (10 MW - 50 MW)
  • 6.4 Large-Scale (Above 50 MW)

7 Global Floating Power Plants Market, By Depth Of Installation

  • 7.1 Introduction
  • 7.2 Shallow Water
  • 7.3 Deep Water

8 Global Floating Power Plants Market, By Technology

  • 8.1 Introduction
  • 8.2 Floating Solar Power Plants
  • 8.3 Floating Wind Power Plants
  • 8.4 Floating Thermal Power Plants
  • 8.5 Floating Nuclear Power Plants
  • 8.6 Hybrid Floating Power Plants
  • 8.7 Other Technologies

9 Global Floating Power Plants Market, By Application

  • 9.1 Introduction
  • 9.2 Offshore Power Generation
  • 9.3 Onshore Power Generation
  • 9.4 Remote or Island Electrification
  • 9.5 Emergency Power Supply
  • 9.6 Disaster Relief Operations
  • 9.7 Other Applications

10 Global Floating Power Plants Market, By End User

  • 10.1 Introduction
  • 10.2 Utilities
  • 10.3 Oil & Gas
  • 10.4 Military & Defense
  • 10.5 Mining
  • 10.6 Telecom & Data Centers
  • 10.7 Other End Users

11 Global Floating Power Plants Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Wartsila Corporation
  • 13.2 Principle Power Inc.
  • 13.3 Ocean Sun AS
  • 13.4 Floating Power Plant A/S
  • 13.5 Ciel & Terre International
  • 13.6 Vikram Solar Limited
  • 13.7 Kyocera Corporation
  • 13.8 DNV GL AS
  • 13.9 Sungrow Power Supply Corporation
  • 13.10 Siemens Gamesa Renewable Energy
  • 13.11 Eco Marine Power Corporation
  • 13.12 Ideol S.A.
  • 13.13 Seabased AB
  • 13.14 Oceans of Energy B.V.
  • 13.15 Masdar

List of Tables

  • Table 1 Global Floating Power Plants Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Floating Power Plants Market Outlook, By Component (2021-2030) ($MN)
  • Table 3 Global Floating Power Plants Market Outlook, By Floating Platforms (2021-2030) ($MN)
  • Table 4 Global Floating Power Plants Market Outlook, By Power Generation Units (2021-2030) ($MN)
  • Table 5 Global Floating Power Plants Market Outlook, By Electrical Infrastructure (2021-2030) ($MN)
  • Table 6 Global Floating Power Plants Market Outlook, By Anchoring Systems (2021-2030) ($MN)
  • Table 7 Global Floating Power Plants Market Outlook, By Monitoring & Control Systems (2021-2030) ($MN)
  • Table 8 Global Floating Power Plants Market Outlook, By Other Components (2021-2030) ($MN)
  • Table 9 Global Floating Power Plants Market Outlook, By Capacity (2021-2030) ($MN)
  • Table 10 Global Floating Power Plants Market Outlook, By Small-Scale (Up to 10 MW) (2021-2030) ($MN)
  • Table 11 Global Floating Power Plants Market Outlook, By Medium-Scale (10 MW - 50 MW) (2021-2030) ($MN)
  • Table 12 Global Floating Power Plants Market Outlook, By Large-Scale (Above 50 MW) (2021-2030) ($MN)
  • Table 13 Global Floating Power Plants Market Outlook, By Depth Of Installation (2021-2030) ($MN)
  • Table 14 Global Floating Power Plants Market Outlook, By Shallow Water (2021-2030) ($MN)
  • Table 15 Global Floating Power Plants Market Outlook, By Deep Water (2021-2030) ($MN)
  • Table 16 Global Floating Power Plants Market Outlook, By Technology (2021-2030) ($MN)
  • Table 17 Global Floating Power Plants Market Outlook, By Floating Solar Power Plants (2021-2030) ($MN)
  • Table 18 Global Floating Power Plants Market Outlook, By Floating Wind Power Plants (2021-2030) ($MN)
  • Table 19 Global Floating Power Plants Market Outlook, By Floating Thermal Power Plants (2021-2030) ($MN)
  • Table 20 Global Floating Power Plants Market Outlook, By Floating Nuclear Power Plants (2021-2030) ($MN)
  • Table 21 Global Floating Power Plants Market Outlook, By Hybrid Floating Power Plants (2021-2030) ($MN)
  • Table 22 Global Floating Power Plants Market Outlook, By Other Technologies (2021-2030) ($MN)
  • Table 23 Global Floating Power Plants Market Outlook, By Application (2021-2030) ($MN)
  • Table 24 Global Floating Power Plants Market Outlook, By Offshore Power Generation (2021-2030) ($MN)
  • Table 25 Global Floating Power Plants Market Outlook, By Onshore Power Generation (2021-2030) ($MN)
  • Table 26 Global Floating Power Plants Market Outlook, By Remote or Island Electrification (2021-2030) ($MN)
  • Table 27 Global Floating Power Plants Market Outlook, By Emergency Power Supply (2021-2030) ($MN)
  • Table 28 Global Floating Power Plants Market Outlook, By Disaster Relief Operations (2021-2030) ($MN)
  • Table 29 Global Floating Power Plants Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 30 Global Floating Power Plants Market Outlook, By End User (2021-2030) ($MN)
  • Table 31 Global Floating Power Plants Market Outlook, By Utilities (2021-2030) ($MN)
  • Table 32 Global Floating Power Plants Market Outlook, By Oil & Gas (2021-2030) ($MN)
  • Table 33 Global Floating Power Plants Market Outlook, By Military & Defense (2021-2030) ($MN)
  • Table 34 Global Floating Power Plants Market Outlook, By Mining (2021-2030) ($MN)
  • Table 35 Global Floating Power Plants Market Outlook, By Telecom & Data Centers (2021-2030) ($MN)
  • Table 36 Global Floating Power Plants Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.