封面
市场调查报告书
商品编码
1587692

到 2030 年 P2G(电转气)市场预测:按技术、应用、最终用户和地区进行的全球分析

Power-to-Gas Market Forecasts to 2030 - Global Analysis By Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC预测,2024年全球P2G(电转气)市场规模将达到397.5亿美元,预计2030年将达到900.5亿美元,预测期内复合年增长率为14.6%。

P2G(电转气)是一项创新技术,可将剩余电能(主要来自风能和太阳能等再生能源来源)转化为氢气和甲烷等气体燃料。该过程透过储存多余的电力以供以后使用来解决可再生能源发电的间歇性问题。 PtG 使用电力电解水,将其分解为氢气和氧气。氢气可以储存或与二氧化碳(从大气或工业来源中回收)一起进一步加工,以在称为甲烷化的过程中产生合成甲烷。这种合成气可以注入现有的天然气管网,用于燃料电池,或用于空间加热。

根据国际能源总署 (IEA) 的数据,电解堆占资本投资的 50-60%。其余 40-50% 是工厂、电力电子和气体调节零件。

人们对气候变迁的认识不断增强

人们对气候变迁的认识不断提高,极大地推动了 P2G(电转气)技术的发展,该技术将剩余的可再生能源转化为氢气和合成天然气。随着各国努力减少温室气体排放,P2G 提供了一个可行的解决方案来利用风能和太阳能的剩余电力。该过程不仅解决了可再生能源的间歇性问题,而且还描述了一种有效储存和运输能源的方法。此外,透过生产氢气,P2G 可以实现传统上依赖石化燃料的各个领域的脱碳,例如运输和工业流程。

整合挑战

电转气(P2G)技术将剩余的可再生能源转化为氢气和合成天然气,但面临阻碍其广泛采用的重大整合挑战。关键问题之一是氢气生产不稳定,因为风能和太阳能等可再生能源是间歇性的。现有的能源基础设施,包括管道和仓储设施,通常没有针对氢气运输和储存进行最佳化,并且需要昂贵的升级。由于缺乏支持 P2G 系统的法律规范或市场结构,相关人员无法确定投资收益,从而使整合更加复杂。

氢经济国家发展

氢经济正在极大地推动 P2G(电转气)技术。 P2G是一种透过电解将剩余电力(通常由风能和太阳能等再生能源来源产生)转化为氢气的技术。这个过程实现了可再生能源的储存和运输,并有效解决了与可再生能源发电相关的间歇性问题。透过生产氢气,P2G 可以促进可再生能源併入能源网,并为交通、暖气和工业流程等各种应用提供清洁的替代燃料。此外,氢气可以转化回电力或用于燃料电池,从而提高能源效率并减少温室气体排放。

P2G技术初期投资

电转气(P2G)技术将多余的可再生能源转化为氢气或甲烷,并将其储存起来以供以后使用,但由于初始投资成本高昂,该技术面临重大障碍。 P2G 系统所需的基础设施(例如电解槽、仓储设施以及与现有天然气网路的整合)需要大量资本支出。这种财务障碍让投资者和公用事业公司望而却步,尤其是在廉价能源解决方案普遍存在的市场上。 P2G计划的投资回收期较长,因此其吸引力不如传统能源投资。 P2G 具有增强能源安全和支持脱碳努力的潜力,但前期成本存在经济不确定性,并且需要政府奖励和政策支持来促进发展。

COVID-19 的影响

COVID-19 大流行对电力转天然气 (PtG) 产业产生了重大影响,凸显了能源格局中的脆弱性和机会。最初,关门和工业活动减少导致能源需求下降,扰乱了依赖稳定电力供应的铂金天然气计划的营运稳定性。供应链中断也影响了电解槽和其他对氢气生产至关重要的技术关键部件的供应。然而,这场危机也加速了人们对永续能源解决方案的兴趣,因为政府和工业界都在寻求增强对未来破坏的抵御能力。

在预测期内,电解部门预计将成为最大的部门

预计电解业务在预测期内将占据最大份额。电解利用电力将水分子分解成氢气和氧气,产生氢气。这在整合风能和太阳能等可再生能源时尤其有利。 P2G透过将多余的电力转化为氢气,平衡供需,确保能源系统更加稳定。产生的氢气可以直接用作燃料,注入天然气网络,或透过进一步的化学过程转化为合成甲烷。这不仅有利于能源储存,还有助于天然气供应和运输部门的脱碳,促进更永续和有弹性的能源未来。

钢铁业预计在预测期内复合年增长率最高

钢铁业预计将在预测期内快速成长,因为它是减少碳排放和提高能源效率的可持续解决方案。铂族碳氢化合物发电透过电解将剩余的可再生能源发电(通常是风能或太阳能)转化为氢气。这种氢气可用于钢铁生产,以取代依赖焦炭的传统碳集中方法。透过采用 PtG,钢铁製造商可以显着减少碳排放,因为氢成为石化燃料的更清洁替代品。此外,PtG 的灵活性使其能够储存剩余的可再生能源并解决能源供应的间歇性问题。随着全球对绿色钢铁的需求增加,铂族金属的整合不仅满足环境法规和企业永续性目标,也使钢铁公司能够在快速发展的市场中保持竞争力。

比最大的地区

预计北美地区将在整个预测期内保持最大的市场份额。与碳市场的整合将透过提供金融机制来支援绿氢技术的开发和部署,从而显着加强北美的电力转天然气(P2G)产业。透过将这些系统与碳市场连结起来,开发商可以将减少温室气体排放的碳信用额收益,从而创造引人注目的经济奖励。这种整合将加速可再生能源计划和基础设施的投资,降低成本并提高氢气生产的可扩展性。

复合年增长率最高的地区

欧洲在预测期内的复合年增长率最高。透过建立明确的框架和奖励,该法规将鼓励对铂族技术的投资,将剩余的再生能源转化为氢气和合成天然气。这个过程不仅有助于能源储存和电网平衡,而且还促进包括运输和供暖在内的各个部门的脱碳。 《绿色交易》和《Fit for 55》等欧洲政策旨在减少温室气体排放并促进氢气作为主要能源载体。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与企业的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计/预测/复合年增长率(註:基于可行性检查)
  • 竞争标基准化分析
    • 按产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 介绍
  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球 P2G(电转气)市场:依技术分类

  • 介绍
  • 电解的
  • 甲烷化

第六章全球 P2G(电转气)市场:依应用分类

  • 介绍
  • 住宅
  • 商业的
  • 工业的

第七章 全球 P2G(电转气)市场:依最终用户分类

  • 介绍
  • 运输
  • 化学产品製造
  • 钢铁工业
  • 其他的

第八章全球 P2G(电转气)市场:按地区

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东/非洲

第九章 主要进展

  • 合约、伙伴关係、合作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第 10 章 公司概况

  • Avacon AG
  • Cummins Inc
  • Fortescue Metals Group
  • FuelCell Energy Inc
  • Hitachi Zosen Inova AG
  • MAN Energy Solutions
  • Siemens Energy AG
  • Sunfire GmbH
  • Thyssenkrupp AG
Product Code: SMRC27679

According to Stratistics MRC, the Global Power-to-Gas Market is accounted for $39.75 billion in 2024 and is expected to reach $90.05 billion by 2030 growing at a CAGR of 14.6% during the forecast period. Power-to-Gas (PtG) is an innovative technology that converts surplus electrical energy, primarily from renewable sources like wind and solar, into gaseous fuels, typically hydrogen or methane. This process addresses the intermittency of renewable energy generation by storing excess power for later use. In PtG, electricity is used to electrolyze water, splitting it into hydrogen and oxygen. The hydrogen can be stored or further processed with carbon dioxide (captured from the atmosphere or industrial sources) to produce synthetic methane through a process called methanation. This synthetic gas can be injected into existing natural gas grids, utilized in fuel cells, or used for heating.

According to the International Energy Agency, electrolyze stacks represent between 50 and 60 percent of the capital investment. The remaining 40 to 50 percent of the investment is made up of components for the plant, power electronics, and gas conditioning.

Market Dynamics:

Driver:

Increasing awareness of climate change

The increasing awareness of climate change is significantly boosting the Power-to-Gas (P2G) technology, which converts excess renewable energy into hydrogen or synthetic natural gas. As nations strive to reduce greenhouse gas emissions, P2G offers a viable solution to harness surplus electricity generated from wind and solar power. This process not only addresses the intermittency of renewable energy but also provides a means to store and transport energy efficiently. Furthermore, by producing hydrogen, P2G enables the decarbonization of various sectors, including transportation and industrial processes, which are traditionally reliant on fossil fuels.

Restraint:

Integration challenges

Power-to-Gas (P2G) technology, which converts surplus renewable energy into hydrogen or synthetic natural gas, faces significant integration challenges that hinder its widespread adoption. One primary issue is the intermittent nature of renewable energy sources like wind and solar, which can lead to inconsistent hydrogen production. Existing energy infrastructure, including pipelines and storage facilities, is often not optimized for hydrogen transport and storage, requiring costly upgrades. The lack of regulatory frameworks and market structures that support P2G systems further complicates integration, as stakeholders may be unsure about investment returns.

Opportunity:

Hydrogen economy development

The hydrogen economy is significantly advancing the Power-to-Gas (P2G) technology, which converts excess electricity-often generated from renewable sources like wind and solar-into hydrogen through electrolysis. This process allows for the storage and transportation of renewable energy, effectively addressing the intermittency issues associated with renewable power generation. By producing hydrogen, P2G can facilitate the integration of renewables into the energy grid, providing a clean fuel alternative for various applications, including transportation, heating, and industrial processes. Moreover, hydrogen can be converted back into electricity or utilized in fuel cells, enhancing energy efficiency and reducing greenhouse gas emissions.

Threat:

Initial investment for P2G technology

Power-to-Gas (P2G) technology, which converts excess renewable energy into hydrogen or methane for storage and later use, faces significant hurdles due to high initial investment costs. The infrastructure required for P2G systems-such as electrolysis units, gas storage facilities, and integration with existing gas networks-demands substantial capital outlay. This financial barrier discourages investors and utilities, particularly in a market where cheaper energy solutions are prevalent. The long payback periods associated with P2G projects make them less attractive compared to traditional energy investments. While P2G has the potential to enhance energy security and support decarbonization efforts, its adoption is stymied by the economic uncertainties surrounding initial costs and the need for government incentives or policy support to foster development.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the Power-to-Gas (PtG) sector, highlighting both vulnerabilities and opportunities within the energy landscape. Initially, lockdowns and reduced industrial activity led to a decline in energy demand, disrupting the operational stability of PtG projects that rely on consistent electricity supply. Supply chain interruptions affected the availability of critical components for electrolyzers and other technologies essential for hydrogen production. However, the crisis also accelerated interest in sustainable energy solutions, as governments and industries sought to bolster resilience against future disruptions.

The Electrolysis segment is expected to be the largest during the forecast period

Electrolysis segment is expected to dominate the largest share over the estimated period. During electrolysis, electricity is used to split water molecules into hydrogen and oxygen, generating hydrogen that can be stored or utilized as an energy carrier. This is particularly beneficial in integrating renewable energy sources like wind and solar, which often produce more energy than the grid can handle. By converting excess electricity into hydrogen, P2G helps balance supply and demand, ensuring a more stable energy system. The hydrogen produced can be used directly as a fuel, injected into natural gas networks, or converted into synthetic methane through further chemical processes. This not only facilitates energy storage but also contributes to decarbonizing the gas supply and transportation sectors, thus promoting a more sustainable and resilient energy future.

The Steel Industry segment is expected to have the highest CAGR during the forecast period

Steel Industry segment is estimated to grow at a rapid pace during the forecast period as a sustainable solution to reduce carbon emissions and enhance energy efficiency. PtG involves converting surplus renewable energy, often generated from wind or solar sources, into hydrogen through electrolysis. This hydrogen can then be used in steel production, replacing traditional carbon-intensive methods that rely on coke. By integrating PtG, steelmakers can significantly lower their carbon footprint, as hydrogen serves as a cleaner alternative to fossil fuels. Additionally, the flexibility of PtG allows for the storage of excess renewable energy, addressing intermittency issues in energy supply. As global demand for green steel rises, the integration of PtG not only aligns with environmental regulations and corporate sustainability goals but also positions steel companies to remain competitive in a rapidly evolving market.

Region with largest share:

North America region is poised to hold the largest share of the market throughout the extrapolated period. Integration with carbon markets is substantially enhancing the Power-to-Gas (P2G) sector in North America by providing a financial mechanism to support the development and deployment of green hydrogen technologies. By linking these systems to carbon markets, developers can monetize carbon credits for the greenhouse gas emissions they mitigate, creating a compelling economic incentive. This integration encourages investment in renewable energy projects and infrastructure, driving down costs and increasing the scalability of hydrogen production.

Region with highest CAGR:

Europe region is estimated to witness the highest CAGR during the projected time frame. By establishing clear frameworks and incentives, regulations promote investment in PtG technologies, which convert excess renewable electricity into hydrogen or synthetic natural gas. This process not only aids in energy storage and balancing the grid but also facilitates the decarbonization of various sectors, including transportation and heating. European policies, such as the Green Deal and Fit for 55, aim to reduce greenhouse gas emissions and promote hydrogen as a key energy carrier.

Key players in the market

Some of the key players in Power-to-Gas market include Avacon AG, Cummins Inc, Fortescue Metals Group, FuelCell Energy Inc, Hitachi Zosen Inova AG, MAN Energy Solutions, Siemens Energy AG, Sunfire GmbH and Thyssenkrupp AG.

Key Developments:

In November 2023, Nature Energy and Andel inaugurated a new power-to-gas facility in Denmark, following a partnership established in autumn 2022. The two companies have invested in a biological Power-to-X plant located in Glansager on Als, which is now ready for production. Once fully operational, the plant will produce hydrogen that will enhance Nature Energy's green gas output by 12,000 m3 per day.

In June 2022, the U.S. Department of Energy invested US$ 504.4 million in finance Advanced Clean Energy Storage, a clean energy and clean hydrogen storage facility that can provide long-term energy storage.

In February 2022, Mitsubishi Power and HydrogenPro have a purchase agreement in place for a substantial electrolyzer system. Through electrolysis, the HydrogenPro electrolyzer system will create green hydrogen and oxygen using wind and solar energy.

Technologies Covered:

  • Electrolysis
  • Methanation

Applications Covered:

  • Residential
  • Commercial
  • Industrial

End Users Covered:

  • Transportation
  • Chemical Production
  • Steel Industry
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power-to-Gas Market, By Technology

  • 5.1 Introduction
  • 5.2 Electrolysis
  • 5.3 Methanation

6 Global Power-to-Gas Market, By Application

  • 6.1 Introduction
  • 6.2 Residential
  • 6.3 Commercial
  • 6.4 Industrial

7 Global Power-to-Gas Market, By End User

  • 7.1 Introduction
  • 7.2 Transportation
  • 7.3 Chemical Production
  • 7.4 Steel Industry
  • 7.5 Other End Users

8 Global Power-to-Gas Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Avacon AG
  • 10.2 Cummins Inc
  • 10.3 Fortescue Metals Group
  • 10.4 FuelCell Energy Inc
  • 10.5 Hitachi Zosen Inova AG
  • 10.6 MAN Energy Solutions
  • 10.7 Siemens Energy AG
  • 10.8 Sunfire GmbH
  • 10.9 Thyssenkrupp AG

List of Tables

  • Table 1 Global Power-to-Gas Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 3 Global Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 4 Global Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 5 Global Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 6 Global Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 7 Global Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 8 Global Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 9 Global Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 10 Global Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 11 Global Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 12 Global Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 13 Global Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 14 North America Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 15 North America Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 16 North America Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 17 North America Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 18 North America Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 19 North America Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 20 North America Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 21 North America Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 22 North America Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 23 North America Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 24 North America Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 25 North America Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 26 North America Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 27 Europe Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 28 Europe Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 29 Europe Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 30 Europe Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 31 Europe Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 32 Europe Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 33 Europe Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 34 Europe Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 35 Europe Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 36 Europe Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 37 Europe Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 38 Europe Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 39 Europe Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 40 Asia Pacific Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 41 Asia Pacific Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 42 Asia Pacific Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 43 Asia Pacific Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 44 Asia Pacific Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 45 Asia Pacific Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 46 Asia Pacific Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 47 Asia Pacific Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 48 Asia Pacific Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 49 Asia Pacific Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 50 Asia Pacific Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 51 Asia Pacific Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 52 Asia Pacific Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 53 South America Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 54 South America Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 55 South America Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 56 South America Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 57 South America Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 58 South America Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 59 South America Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 60 South America Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 61 South America Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 62 South America Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 63 South America Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 64 South America Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 65 South America Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 66 Middle East & Africa Power-to-Gas Market Outlook, By Country (2022-2030) ($MN)
  • Table 67 Middle East & Africa Power-to-Gas Market Outlook, By Technology (2022-2030) ($MN)
  • Table 68 Middle East & Africa Power-to-Gas Market Outlook, By Electrolysis (2022-2030) ($MN)
  • Table 69 Middle East & Africa Power-to-Gas Market Outlook, By Methanation (2022-2030) ($MN)
  • Table 70 Middle East & Africa Power-to-Gas Market Outlook, By Application (2022-2030) ($MN)
  • Table 71 Middle East & Africa Power-to-Gas Market Outlook, By Residential (2022-2030) ($MN)
  • Table 72 Middle East & Africa Power-to-Gas Market Outlook, By Commercial (2022-2030) ($MN)
  • Table 73 Middle East & Africa Power-to-Gas Market Outlook, By Industrial (2022-2030) ($MN)
  • Table 74 Middle East & Africa Power-to-Gas Market Outlook, By End User (2022-2030) ($MN)
  • Table 75 Middle East & Africa Power-to-Gas Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 76 Middle East & Africa Power-to-Gas Market Outlook, By Chemical Production (2022-2030) ($MN)
  • Table 77 Middle East & Africa Power-to-Gas Market Outlook, By Steel Industry (2022-2030) ($MN)
  • Table 78 Middle East & Africa Power-to-Gas Market Outlook, By Other End Users (2022-2030) ($MN)