封面
市场调查报告书
商品编码
1700170

2032 年选择性催化还原市场预测:按还原剂类型、催化剂类型、成分、应用、最终用户和地区进行的全球分析

Selective Catalytic Reduction Market Forecasts to 2032 - Global Analysis By Reducing Agent Type (Ammonia, Urea and Diesel Exhaust Fluid), Catalyst Type, Component, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球选择性催化还原市场预计在 2025 年达到 154 亿美元,到 2032 年将达到 251 亿美元,预测期内的复合年增长率为 7.2%。

选择性催化还原 (SCR) 是一种先进的排放控制技术,在催化剂的作用下,透过与还原剂(通常是氨或尿素)发生化学反应来减少废气中的氮氧化物 (NOx)。该过程将有害的 NOx排放转化为无害的氮气 (N2) 和水蒸气 (H2O),显着降低空气污染水平。 SCR 广泛应用于发电厂、工业锅炉和柴油发动机,可更好地满足欧盟 6 和 Tier 4 标准等严格的环境法规的要求。

根据国际清洁交通理事会(ICCT)的数据,欧盟6d标准要求柴油乘用车的NOx排放低于80mg/km,而国六标准则将轻型车的NOx排放限制在35mg/km。

工业化和发电的扩张

全球工业化加速和发电活动不断成长是选择性催化还原 (SCR) 市场的重要驱动力,尤其是在新兴经济体。中国国六标准和印度BS-VI等严格的排放标准要求燃煤发电厂和重工业减少氮氧化物排放,从而推动了SCR技术的应用。 SCR 技术与热电联产 (CHP) 系统的整合进一步推动了全球空气品质法规的遵守并加速了市场渗透。

尿素供应依赖度(DEF)

尿素是 SCR 系统的关键成分,用于生产氨以减少柴油引擎中的氮氧化物。由于供应链中断或地缘政治因素导致尿素供应波动,可能导致成本增加和营运效率低。此外,某些地区对尿素进口的依赖加剧了其对市场波动的脆弱性。因此,尿素供应有限可能会阻碍 SCR 技术的采用并影响严格的排放法规的遵守。

扩大在海洋和航空领域的应用

国际海事组织 Tier III 标准等严格的排放法规正在推动采用 SCR 系统来减少船舶的氮氧化物 (NOx)排放。同样,在航空领域,人们正在研究 SCR 技术以满足地面支援设备和辅助动力装置的环境标准。这些应用正在推动 SCR 催化剂、轻量化设计和空间受限环境中的小型化系统的进步。

来自替代排放控制技术的竞争

废气再循环(EGR)和稀油氮氧化物捕集器(LNT)等新技术为减少氮氧化物排放提供了经济高效的解决方案。这些替代技术在某些应用方面可能优于 SCR 系统,导致 SCR 技术的采用减少。此外,混合动力汽车和电动车技术的进步将进一步减少对 SCR 系统的需求,因为这些汽车的排放气体较低。

COVID-19的影响:

疫情最初扰乱了 SCR 供应链,在封锁期间推迟了零件製造和安装计划。工业活动的下降和排放气体法规的延迟导致2020-2021年需求暂时放缓。然而,欧盟绿色新政和美国基础设施法案等疫情后復苏计画已优先为清洁空气技术提供资金,并恢復了对 SCR 的投资。由于需求强劲和监管收紧加速,SCR 市场目前正在復苏。

钒基催化剂市场预计将成为预测期内最大的市场

由于钒基催化剂在减少氮氧化物 (NOx)排放方面效率高,预计在预测期内将占据最大的市场占有率。 TiO2 上负载的 V2O5 催化剂可在很宽的温度范围内有效运行,适用于各种工业应用。即使在低温下也能实现较高的NOx转换率,这使得它在严格的法规环境中也具有吸引力。然而,对钒毒性和处置挑战的担忧可能会影响市场成长。

预计在预测期内,发电厂部分将以最高的复合年增长率成长。

预计发电厂部门在预测期内将实现最高成长率。 SCR 系统广泛应用于燃煤发电厂和天然气发电厂,以符合旨在减少 NOx排放的严格环境法规。全球能源需求的不断增长和向清洁能源来源的转变进一步推动了 SCR 技术在发电中的应用。此外,向再生能源来源的转变可能会影响发电厂对 SCR 系统的长期需求。

占比最大的地区:

在预测期内,由于工业化进程加快和能源需求不断增加,预计亚太地区将占据最大的市场占有率。主要製造地的位置,加上严格的排放法规,正在刺激所有产业采用 SCR 技术。中国和印度是工业排放最大的国家之一,正在大力投资氮氧化物减排解决方案。该地区运输、发电和石化行业的扩张继续支持市场成长。

复合年增长率最高的地区:

在预测期内,由于严格的环境法规和排放控制技术的进步,预计北美将呈现最高的复合年增长率。美国和加拿大有严格的NOx排放标准,迫使工业界采用SCR系统来遵守。人们越来越关注减少发电厂、汽车和海洋工业的温室气体排放,这进一步推动了市场的成长。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球选择性催化还原市场(依还原剂型态)

  • 尿素
  • 柴油引擎废气处理液

6. 全球选择性催化还原市场(依催化剂型态)

  • 钒基催化剂
  • 沸石催化剂
  • 二氧化钛(TiO2)催化剂
  • 金属氧化物催化剂

7. 全球选择性催化还原市场(依成分)

  • 尿素罐
  • 尿素泵
  • 电控系统
  • 注射器

8. 全球选择性催化还原市场(依应用)

  • 发电厂
  • 废弃物焚烧
  • 精製
  • 金属和製造业
  • 机车和农业机械
  • 其他用途

9. 全球选择性催化还原市场(以最终用户划分)

  • 发电
  • 水泥工业
  • 海洋产业
  • 其他最终用户

第十章全球选择性催化还原市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Tenneco Inc
  • SCR Solutions Holding Ltd
  • Rochling Group
  • Plastic Omnium
  • Mitsubishi Heavy Industries Ltd
  • Magneti Marelli
  • Johnson Matthey
  • Haldor Topsoe
  • Faurecia
  • Durr Systems, Inc.
  • Cummins Inc.
  • Cormetech
  • CONCORD Thermal Efficiency
  • Ceram-Ibiden
  • BOSCH
  • Bosal
  • BASF
  • ANDRITZ Clean Air Technologies
Product Code: SMRC29073

According to Stratistics MRC, the Global Selective Catalytic Reduction Market is accounted for $15.4 billion in 2025 and is expected to reach $25.1 billion by 2032 growing at a CAGR of 7.2% during the forecast period. Selective Catalytic Reduction (SCR) is an advanced emission control technology that reduces nitrogen oxides (NOx) from exhaust gases through a chemical reaction with a reductant, typically ammonia or urea, in the presence of a catalyst. This process converts harmful NOx emissions into harmless nitrogen (N2) and water vapor (H2O), significantly lowering air pollution levels. Widely used in power plants, industrial boilers, and diesel engines, SCR enhances compliance with stringent environmental regulations such as Euro 6 and Tier 4 standards.

According to the International Council on Clean Transportation (ICCT), Euro 6d standards require NOx emissions from diesel passenger cars to be below 80 mg/km, while China 6 standards limit NOx emissions to 35 mg/km for light-duty vehicles.

Market Dynamics:

Driver:

Growing industrialization and power generation

The accelerating pace of industrialization and expanding power generation activities worldwide are pivotal drivers for the selective catalytic reduction (SCR) market, particularly in emerging economies. Stringent emission norms, such as China's National VI and India's BS-VI standards, mandate NOx reduction in coal-fired plants and heavy industries, propelling SCR adoption. The integration of SCR technology in combined heat and power (CHP) systems further supports compliance with global air quality regulations accelerating market penetration.

Restraint:

Dependency on urea supply (DEF)

Urea, a critical component in SCR systems, is used to produce ammonia for NOx reduction in diesel engines. Fluctuations in urea availability due to supply chain disruptions or geopolitical factors can lead to increased costs and operational inefficiencies. Additionally, reliance on urea imports in certain regions exacerbates vulnerability to market volatility. Thus limited urea supply can hinder the adoption of SCR technology, impacting compliance with stringent emission regulations.

Opportunity:

Expanding use in marine and aviation sectors

Stringent emission regulations, such as IMO Tier III standards, are propelling the adoption of SCR systems to reduce nitrogen oxide (NOx) emissions from ships. Similarly, in aviation, SCR technology is being explored to meet evolving environmental standards for ground support equipment and auxiliary power units. These applications are fostering advancements in SCR catalysts, lightweight designs, and compact systems tailored for space-constrained environments.

Threat:

Competition from alternative emission control technologies

Emerging technologies, such as Exhaust Gas Recirculation (EGR) and Lean NOx Traps (LNT), offer cost-effective and efficient solutions for reducing nitrogen oxide emissions. These alternatives can outperform SCR systems in specific applications, leading to reduced adoption of SCR technology. Additionally, advancements in hybrid and electric vehicle technologies further diminish the demand for SCR systems, as these vehicles produce fewer emissions.

Covid-19 Impact:

The pandemic initially disrupted SCR supply chains, delaying component manufacturing and installation projects amid lockdowns. Reduced industrial activity and deferred emission compliance timelines temporarily slowed demand in 2020-2021. However, post-pandemic recovery packages, such as the EU's Green Deal and U.S. Infrastructure Bill, prioritized funding for clean air technologies, reviving SCR investments. The market is now rebounding, driven by pent-up demand and accelerated regulatory enforcement.

The vanadium-based catalysts segment is expected to be the largest during the forecast period

The vanadium-based catalysts segment is expected to account for the largest market share during the forecast period due to their high efficiency in reducing nitrogen oxides (NOx) emissions. These catalysts, typically composed of V2O5 supported on TiO2, operate effectively across a wide temperature range, making them suitable for diverse industrial applications. Their ability to achieve high NOx conversion rates, even at low temperatures, enhances their appeal in stringent regulatory environments. However, concerns over vanadium toxicity and disposal challenges may impact market growth.

The power plants segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the power plants segment is predicted to witness the highest growth rate. SCR systems are widely adopted in coal-fired and natural gas-fired power plants to comply with stringent environmental regulations aimed at reducing NOx emissions. The increasing global energy demand and the transition to cleaner energy sources further boost the adoption of SCR technology in power generation. Additionally, the shift towards renewable energy sources may impact the long-term demand for SCR systems in power plants.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid industrialization and increasing energy demand. The presence of major manufacturing hubs, coupled with stringent emission control regulations, has fueled the adoption of SCR technology across industries. China and India, being among the largest contributors to industrial emissions, are heavily investing in NOx reduction solutions. The expansion of transportation, power generation, and petrochemical sectors in the region continues to support the market's growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR driven by stringent environmental regulations and advancements in emission control technologies. The U.S. and Canada have enforced strict NOx emission standards, compelling industries to adopt SCR systems for compliance. The growing focus on reducing greenhouse gas emissions in power plants, automotive, and marine industries is further accelerating market growth.

Key players in the market

Some of the key players in Selective Catalytic Reduction Market include Tenneco Inc, SCR Solutions Holding Ltd, Rochling Group, Plastic Omnium, Mitsubishi Heavy Industries Ltd, Magneti Marelli, Johnson Matthey, Haldor Topsoe,Faurecia, Durr Systems, Inc., Cummins Inc., Cormetech, CONCORD Thermal Efficiency, Ceram-Ibiden, BOSCH, Bosal, BASF and ANDRITZ Clean Air Technologies

Key Developments:

In Jan 2025, BASF is projected to launch SYNOVA(R) Flex, a dual-function SCR catalyst compatible with both diesel and hydrogen combustion engines. The product aligns with global shifts toward multi-fuel transitional powertrains in maritime and rail sectors.

In February 2024, ANDRITZ announced it had secured an order from TPC Group to supply a Selective Catalytic Reduction (SCR) system for NOx emissions reduction at a power boiler in Houston, TX, U.S. This system is tailored for industrial use, offering high-efficiency NOx control to meet stringent environmental standards.

Reducing Agent Types Covered:

  • Ammonia
  • Urea
  • Diesel Exhaust Fluid

Catalyst Types Covered:

  • Vanadium-based Catalysts
  • Zeolite-based Catalysts
  • Titanium Dioxide (TiO2) Catalysts
  • Metal Oxide Catalysts

Components Covered:

  • Urea Tanks
  • Urea Pumps
  • Electronic Control Units
  • Injectors

Applications Covered:

  • Power Plants
  • Waste Incineration
  • Petroleum Refineries
  • Metal & Manufacturing
  • Locomotives & Agricultural Machinery
  • Other Applications

End Users Covered:

  • Automotives
  • Power Generation
  • Cement Industry
  • Marine Industry
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Selective Catalytic Reduction Market, By Reducing Agent Type

  • 5.1 Introduction
  • 5.2 Ammonia
  • 5.3 Urea
  • 5.4 Diesel Exhaust Fluid

6 Global Selective Catalytic Reduction Market, By Catalyst Type

  • 6.1 Introduction
  • 6.2 Vanadium-based Catalysts
  • 6.3 Zeolite-based Catalysts
  • 6.4 Titanium Dioxide (TiO2) Catalysts
  • 6.5 Metal Oxide Catalysts

7 Global Selective Catalytic Reduction Market, By Component

  • 7.1 Introduction
  • 7.2 Urea Tanks
  • 7.3 Urea Pumps
  • 7.4 Electronic Control Units
  • 7.5 Injectors

8 Global Selective Catalytic Reduction Market, By Application

  • 8.1 Introduction
  • 8.2 Power Plants
  • 8.3 Waste Incineration
  • 8.4 Petroleum Refineries
  • 8.5 Metal & Manufacturing
  • 8.6 Locomotives & Agricultural Machinery
  • 8.7 Other Applications

9 Global Selective Catalytic Reduction Market, By End User

  • 9.1 Introduction
  • 9.2 Automotives
  • 9.3 Power Generation
  • 9.4 Cement Industry
  • 9.5 Marine Industry
  • 9.6 Other End Users

10 Global Selective Catalytic Reduction Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Tenneco Inc
  • 12.2 SCR Solutions Holding Ltd
  • 12.3 Rochling Group
  • 12.4 Plastic Omnium
  • 12.5 Mitsubishi Heavy Industries Ltd
  • 12.6 Magneti Marelli
  • 12.7 Johnson Matthey
  • 12.8 Haldor Topsoe
  • 12.9 Faurecia
  • 12.10 Durr Systems, Inc.
  • 12.11 Cummins Inc.
  • 12.12 Cormetech
  • 12.13 CONCORD Thermal Efficiency
  • 12.14 Ceram-Ibiden
  • 12.15 BOSCH
  • 12.16 Bosal
  • 12.17 BASF
  • 12.18 ANDRITZ Clean Air Technologies

List of Tables

  • Table 1 Global Selective Catalytic Reduction Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Selective Catalytic Reduction Market Outlook, By Reducing Agent Type (2024-2032) ($MN)
  • Table 3 Global Selective Catalytic Reduction Market Outlook, By Ammonia (2024-2032) ($MN)
  • Table 4 Global Selective Catalytic Reduction Market Outlook, By Urea (2024-2032) ($MN)
  • Table 5 Global Selective Catalytic Reduction Market Outlook, By Diesel Exhaust Fluid (2024-2032) ($MN)
  • Table 6 Global Selective Catalytic Reduction Market Outlook, By Catalyst Type (2024-2032) ($MN)
  • Table 7 Global Selective Catalytic Reduction Market Outlook, By Vanadium-based Catalysts (2024-2032) ($MN)
  • Table 8 Global Selective Catalytic Reduction Market Outlook, By Zeolite-based Catalysts (2024-2032) ($MN)
  • Table 9 Global Selective Catalytic Reduction Market Outlook, By Titanium Dioxide (TiO2) Catalysts (2024-2032) ($MN)
  • Table 10 Global Selective Catalytic Reduction Market Outlook, By Metal Oxide Catalysts (2024-2032) ($MN)
  • Table 11 Global Selective Catalytic Reduction Market Outlook, By Component (2024-2032) ($MN)
  • Table 12 Global Selective Catalytic Reduction Market Outlook, By Urea Tanks (2024-2032) ($MN)
  • Table 13 Global Selective Catalytic Reduction Market Outlook, By Urea Pumps (2024-2032) ($MN)
  • Table 14 Global Selective Catalytic Reduction Market Outlook, By Electronic Control Units (2024-2032) ($MN)
  • Table 15 Global Selective Catalytic Reduction Market Outlook, By Injectors (2024-2032) ($MN)
  • Table 16 Global Selective Catalytic Reduction Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global Selective Catalytic Reduction Market Outlook, By Power Plants (2024-2032) ($MN)
  • Table 18 Global Selective Catalytic Reduction Market Outlook, By Waste Incineration (2024-2032) ($MN)
  • Table 19 Global Selective Catalytic Reduction Market Outlook, By Petroleum Refineries (2024-2032) ($MN)
  • Table 20 Global Selective Catalytic Reduction Market Outlook, By Metal & Manufacturing (2024-2032) ($MN)
  • Table 21 Global Selective Catalytic Reduction Market Outlook, By Locomotives & Agricultural Machinery (2024-2032) ($MN)
  • Table 22 Global Selective Catalytic Reduction Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global Selective Catalytic Reduction Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global Selective Catalytic Reduction Market Outlook, By Automotives (2024-2032) ($MN)
  • Table 25 Global Selective Catalytic Reduction Market Outlook, By Power Generation (2024-2032) ($MN)
  • Table 26 Global Selective Catalytic Reduction Market Outlook, By Cement Industry (2024-2032) ($MN)
  • Table 27 Global Selective Catalytic Reduction Market Outlook, By Marine Industry (2024-2032) ($MN)
  • Table 28 Global Selective Catalytic Reduction Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.