封面
市场调查报告书
商品编码
1813452

2032 年减重药物研究市场预测:按平台、药物、技术、应用、最终用户和地区进行的全球分析

Microgravity Drug Research Market Forecasts to 2032 - Global Analysis By Platform, Drug, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球减重力药物研究市场预计在 2025 年达到 8.165 亿美元,到 2032 年将达到 20.684 亿美元,预测期内的复合年增长率为 14.2%。

减重药物研究探索在类似国际太空站的低重力环境下进行药物开发。这种独特的环境会改变细胞行为、蛋白质结晶和分子相互作用,从而更精确地研究生物机制。促进更高品质蛋白质晶体的生长并增强3D组织建模可以加速药物发现并改善製剂策略。透过消除地球引力的干扰,减重使得研究原本难以重现的复杂生物医学现象成为可能。

根据《药物研究中的现代统计应用》,在临床研究中,生物统计学控制研究设计、样本大小估计、随机化和结果分析,以可靠地识别治疗效果,同时最大限度地降低风险。

增加投资、太空商业化和优质蛋白质结晶

低重力环境使得高度有序的蛋白质晶体得以形成,这在地球上难以实现,从而改善药物标靶识别和分子表征。这些进步正在加速生技药品和精准疗法的发展。包括国际太空站(ISS)在内的低地球轨道平台的商业化为药物研发开闢了新的途径。此外,航太机构与生技公司之间的合作正在培育可扩展的治疗方法研发研究模式。

高成本和物流

在太空进行实验需要专门的有效载荷整合、发射协调和任务后分析,所有这些都会导致高昂的营运成本。此外,有限的轨道平台使用权和较长的实验前置作业时间阻碍了快速原型製作和可扩展性。太空临床试验的监管合规性增加了一层复杂性,使得小型生物技术公司难以参与。除非实施成本削减策略和精简物流,否则这些挑战可能会减缓其广泛应用。

新治疗方法的开发

研究人员正在探索再生医学、肿瘤学、神经退化性疾病以及其他细胞行为与地球显着不同的疾病的太空模型。这已推动干细胞分化、组织工程和药物疗效测试取得突破性进展。模拟失重环境下疾病进展的能力有助于设计更有针对性、更有效的治疗方法。随着太空研究的普及,製药公司可望利用这些洞见,打造具有更佳临床疗效的下一代治疗方法。

与先进地面技术的竞争

虽然失重研究具有明显的优势,但它面临着来自器官晶片系统、人工智慧药物研发平台和高解析度成像技术等尖端地面技术的日益激烈的竞争。此外,模拟模型和实验室自动化的不断改进正在缩小太空和地面研究成果之间的差距。除非失重平台能够在治疗产量和成本效益方面展现出明显的优势,否则其市场相关性可能会受到质疑。

COVID-19的影响:

由于旅行限制和供应链中断,新冠疫情导致太空任务暂时停止,多个低重力研究计划也因此延后。然而,这场危机也凸显了去中心化且富有韧性的研发生态系统的重要性。随着製药公司寻求创新方法加速药物研发,人们对太空平台的兴趣也急剧上升。疫情也促使航太机构与生技公司之间建立了新的伙伴关係,并着重于低重力环境下的抗病毒研究和免疫反应研究。

预计国际太空站(ISS) 部门将成为预测期内最大的部门。

国际太空站(ISS) 预计将在预测期内占据最大的市场份额,这得益于其完善的基础设施和在生物医学实验方面取得的骄人成绩。作为最便捷的轨道实验室,ISS 支持广泛的药物研究,包括蛋白质结晶、干细胞行为和组织再生。其模组化设计和持续的人员驻留使其能够进行即时监控和迭代测试。

预计再生医学领域在预测期内将以最高的复合年增长率成长。

再生医学领域预计将在预测期内呈现最高成长率,这得益于太空中观察到的独特细胞反应。低重力环境促进干细胞增生、分化和组织形成,为开发器官衰竭、肌肉骨骼疾病和创伤治疗的治疗方法提供了前所未有的机会。研究人员正在利用轨道平台研究无支架组织形成和细胞外基质动力学,这些过程在地球上难以复製。

比最大的地区

北美凭藉其强大的太空基础设施、强大的政府支持以及蓬勃发展的生物技术生态系统,预计将在预测期内占据最大的市场份额。该地区拥有NASA和SpaceX等主要企业,以及许多活跃于轨道生命科学领域的学术机构。有利的法律规范和诸如「减重生物医学研究计画」之类的资助计画正在加速技术创新。此外,先进的製药生产能力和创业投资兴趣也巩固了北美在这一新兴领域的主导地位。

复合年增长率最高的地区:

在预测期内,由于对太空探勘和生物医学研究的投资不断增加,预计亚太地区将呈现最高的复合年增长率。中国、日本和印度等国家正在扩展其轨道能力,并推出专门的生命科学任务。政府主导的促进太空商业化和国际合作的倡议,为低重力环境下的药物研究创造了肥沃的土壤。该地区製药业的成长以及对先进疗法日益增长的需求,进一步推动了市场的成长。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球减重力药物研究市场(按平台)

  • 国际太空站(ISS)
  • 跳楼机
  • 商业太空站
  • 基于立方体卫星的实验
  • 抛物线飞行
  • 地面设施
  • 弹道火箭
  • 高空气球
  • 月球和火星模拟任务
  • 其他平台

6. 全球低重力药物研究市场(按药物)

  • 小分子药物
  • 再生医学
  • 生物製药
  • 酵素疗法
  • 疫苗

7. 全球减重力药物研究市场(按技术)

  • 分子对接与模拟
  • 3D细胞培养和类器官
  • 基因组和转录组分析
  • 蛋白质结晶
  • 基于人工智慧的药物发现
  • 其他技术

8. 全球减重力药物研究市场(按应用)

  • 材料科学
  • 太空探勘
  • 燃烧科学
  • 药物开发与研究
  • 动态
  • 生物技术
  • 其他用途

9. 全球低重力药物研究市场(按最终用户)

  • 政府机构
  • 商业航太公司
  • 製药公司
  • 研究机构
  • 其他最终用户

10. 全球低重力药物研究市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • NASA
  • European Space Agency(ESA)
  • SpacePharma
  • Emulate Bio
  • Zymeworks
  • Axiom Space
  • BioServe Space Technologie
  • Blue Origin
  • SpaceX
  • BenchSci
  • Varda Space Industries
  • CytoReason
  • Deep Genomics
  • Insilico Medicine
  • Nanoracks
  • Redwire Space
  • StemRad
  • Orbit Fab
Product Code: SMRC30901

According to Stratistics MRC, the Global Microgravity Drug Research Market is accounted for $816.5 million in 2025 and is expected to reach $2,068.4 million by 2032 growing at a CAGR of 14.2% during the forecast period. Microgravity drug research explores pharmaceutical development in low-gravity environments, such as aboard the International Space Station. This unique setting alters cellular behavior, protein crystallization, and molecular interactions, enabling more precise studies of biological mechanisms. It facilitates the growth of higher-quality protein crystals and enhances 3D tissue modeling, which can accelerate drug discovery and improve formulation strategies. By removing Earth's gravitational interference, microgravity allows researchers to investigate complex biomedical phenomena that are otherwise difficult to replicate.

According to Statistical Applications in Modern Pharmaceutical Research In clinical research, biostatistics governs study design, sample size estimation, randomization, and outcome analysis, ensuring that therapeutic benefits are identified while minimizing risks.

Market Dynamics:

Driver:

Increased investment, commercialization of space & superior protein crystallization

Microgravity conditions enable the formation of highly ordered protein crystals, which are difficult to achieve on Earth, thereby improving drug target identification and molecular characterization. These advancements are accelerating the development of biologics and precision therapies. The commercialization of low Earth orbit platforms, including the International Space Station (ISS), has opened new avenues for pharmaceutical R&D. Additionally, collaborations between space agencies and biotech firms are fostering scalable research models for therapeutic discovery.

Restraint:

High costs and logistics

Conducting experiments in space requires specialized payload integration, launch coordination, and post-mission analysis, all of which contribute to high operational expenses. Moreover, limited access to orbital platforms and long lead times for experiment cycles hinder rapid prototyping and scalability. Regulatory compliance for space-based trials adds another layer of complexity, making it difficult for smaller biotech firms to participate. These challenges may slow down widespread adoption unless cost-reduction strategies and streamlined logistics are implemented.

Opportunity:

Development of new therapeutic modalities

Researchers are exploring space-based models for regenerative medicine, oncology, and neurodegenerative diseases, where cellular behavior differs significantly from terrestrial conditions. This has led to breakthroughs in stem cell differentiation, tissue engineering, and drug efficacy testing. The ability to simulate disease progression in microgravity is enabling the design of more targeted and effective treatments. As space research becomes more accessible, pharmaceutical companies are expected to leverage these findings to create next-generation therapies with enhanced clinical outcomes.

Threat:

Competition from advanced terrestrial technologies

While microgravity research presents distinct advantages, it faces growing competition from cutting-edge terrestrial technologies such as organ-on-chip systems, AI-driven drug discovery platforms, and high-resolution imaging techniques. Additionally, continuous improvements in simulation models and lab automation are narrowing the gap between space-based and ground-based research outcomes. If microgravity platforms fail to demonstrate clear superiority in therapeutic yield or cost-effectiveness, their market relevance may be challenged.

Covid-19 Impact:

The COVID-19 pandemic temporarily disrupted space missions and delayed several microgravity research projects due to travel restrictions and supply chain interruptions. However, the crisis also underscored the importance of decentralized and resilient R&D ecosystems. As pharmaceutical companies sought innovative ways to accelerate drug discovery, interest in space-based platforms surged. The pandemic catalyzed new partnerships between space agencies and biotech firms, focusing on antiviral research and immune response studies in microgravity.

The international space station (ISS) segment is expected to be the largest during the forecast period

The international space station (ISS) segment is expected to account for the largest market share during the forecast period due to its established infrastructure and proven track record in biomedical experimentation. As the most accessible orbital laboratory, the ISS supports a wide range of pharmaceutical studies, including protein crystallization, stem cell behavior, and tissue regeneration. Its modular design and continuous human presence allow for real-time monitoring and iterative testing.

The regenerative medicines segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the regenerative medicines segment is predicted to witness the highest growth rate driven by the unique cellular responses observed in space. Microgravity conditions enhance stem cell proliferation, differentiation, and tissue formation, offering unprecedented opportunities for developing therapies for organ failure, musculoskeletal disorders, and wound healing. Researchers are leveraging orbital platforms to study scaffold-free tissue assembly and extracellular matrix dynamics, which are difficult to replicate on Earth.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share attributed to robust space infrastructure, strong government backing, and a thriving biotech ecosystem. The region hosts key players such as NASA, SpaceX, and numerous academic institutions actively engaged in orbital life sciences. Favorable regulatory frameworks and funding programs like the Biomedical Research in Microgravity initiative are accelerating innovation. Additionally, the presence of advanced pharmaceutical manufacturing capabilities and venture capital interest is reinforcing North America's dominance in this emerging field.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by increasing investments in space exploration and biomedical research. Countries like China, Japan, and India are expanding their orbital capabilities and launching dedicated life sciences missions. Government-led initiatives promoting space commercialization and international collaborations are creating fertile ground for microgravity drug research. The region's growing pharmaceutical sector and rising demand for advanced therapies are further propelling market growth.

Key players in the market

Some of the key players in Microgravity Drug Research Market include NASA, European Space Agency (ESA), SpacePharma, Emulate Bio, Zymeworks, Axiom Space, BioServe Space Technologies, Blue Origin, SpaceX, BenchSci, Varda Space Industries, CytoReason, Deep Genomics, Insilico Medicine, Nanoracks, Redwire Space, StemRad, and Orbit Fab.

Key Developments:

In August 2025, ESA issued press releases for 2025 programme milestones and mid-year programme/Flight Ticket Initiative updates. ESA's 2025 release slate covers launch timetables, programme partnerships and IAC participation notices.

In March 2024, Blue Origin announced New Glenn national-security launch contract wins and continued New Shepard crewed flights through mid-2025 (NS-32 / NS-33 / NS-35 etc.). The 2025 items highlight contract awards and routine suborbital flight cadence for New Shepard.

In May 2025, Deep Genomics announced an expansion of its AI foundation model platform (REPRESS) to improve prediction of RNA biology and accelerate RNA therapeutic design. The release describes platform advances for decoding gene regulation and supporting therapeutic discovery workflows.

Platforms Covered:

  • International Space Station (ISS)
  • Drop Towers
  • Commercial Space Stations
  • CubeSat-based Experiments
  • Parabolic Flights
  • Ground-based Facilities
  • Suborbital Rockets
  • High-Altitude Balloons
  • Lunar and Martian Analog Missions
  • Other Platforms

Drugs Covered:

  • Small Molecule Drugs
  • Regenerative Medicines
  • Biologics
  • Enzyme Therapies
  • Vaccines

Technologies Covered:

  • Molecular Docking & Simulation
  • 3D Cell Culture & Organoids
  • Genomic & Transcriptomic Profiling
  • Protein Crystallization
  • AI-Based Drug Discovery
  • Other Technologies

Applications Covered:

  • Material Science
  • Space Exploration
  • Combustion Science
  • Drug Development & Pharmaceutical Research
  • Fluid Dynamics
  • Biotechnology
  • Other Applications

End Users Covered:

  • Government Agencies
  • Commercial Space Companies
  • Pharmaceutical Companies
  • Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Microgravity Drug Research Market, By Platform

  • 5.1 Introduction
  • 5.2 International Space Station (ISS)
  • 5.3 Drop Towers
  • 5.4 Commercial Space Stations
  • 5.5 CubeSat-based Experiments
  • 5.6 Parabolic Flights
  • 5.7 Ground-based Facilities
  • 5.8 Suborbital Rockets
  • 5.9 High-Altitude Balloons
  • 5.10 Lunar and Martian Analog Missions
  • 5.11 Other Platforms

6 Global Microgravity Drug Research Market, By Drug

  • 6.1 Introduction
  • 6.2 Small Molecule Drugs
  • 6.3 Regenerative Medicines
  • 6.4 Biologics
  • 6.5 Enzyme Therapies
  • 6.6 Vaccines

7 Global Microgravity Drug Research Market, By Technology

  • 7.1 Introduction
  • 7.2 Molecular Docking & Simulation
  • 7.3 3D Cell Culture & Organoids
  • 7.4 Genomic & Transcriptomic Profiling
  • 7.5 Protein Crystallization
  • 7.6 AI-Based Drug Discovery
  • 7.7 Other Technologies

8 Global Microgravity Drug Research Market, By Application

  • 8.1 Introduction
  • 8.2 Material Science
  • 8.3 Space Exploration
  • 8.4 Combustion Science
  • 8.5 Drug Development & Pharmaceutical Research
  • 8.6 Fluid Dynamics
  • 8.7 Biotechnology
  • 8.8 Other Applications

9 Global Microgravity Drug Research Market, By End User

  • 9.1 Introduction
  • 9.2 Government Agencies
  • 9.3 Commercial Space Companies
  • 9.4 Pharmaceutical Companies
  • 9.5 Research Institutions
  • 9.6 Other End Users

10 Global Microgravity Drug Research Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 NASA
  • 12.2 European Space Agency (ESA)
  • 12.3 SpacePharma
  • 12.4 Emulate Bio
  • 12.5 Zymeworks
  • 12.6 Axiom Space
  • 12.7 BioServe Space Technologie
  • 12.8 Blue Origin
  • 12.9 SpaceX
  • 12.10 BenchSci
  • 12.11 Varda Space Industries
  • 12.12 CytoReason
  • 12.13 Deep Genomics
  • 12.14 Insilico Medicine
  • 12.15 Nanoracks
  • 12.16 Redwire Space
  • 12.17 StemRad
  • 12.18 Orbit Fab

List of Tables

  • Table 1 Global Microgravity Drug Research Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Microgravity Drug Research Market Outlook, By Platform (2024-2032) ($MN)
  • Table 3 Global Microgravity Drug Research Market Outlook, By International Space Station (ISS) (2024-2032) ($MN)
  • Table 4 Global Microgravity Drug Research Market Outlook, By Drop Towers (2024-2032) ($MN)
  • Table 5 Global Microgravity Drug Research Market Outlook, By Commercial Space Stations (2024-2032) ($MN)
  • Table 6 Global Microgravity Drug Research Market Outlook, By CubeSat-based Experiments (2024-2032) ($MN)
  • Table 7 Global Microgravity Drug Research Market Outlook, By Parabolic Flights (2024-2032) ($MN)
  • Table 8 Global Microgravity Drug Research Market Outlook, By Ground-based Facilities (2024-2032) ($MN)
  • Table 9 Global Microgravity Drug Research Market Outlook, By Suborbital Rockets (2024-2032) ($MN)
  • Table 10 Global Microgravity Drug Research Market Outlook, By High-Altitude Balloons (2024-2032) ($MN)
  • Table 11 Global Microgravity Drug Research Market Outlook, By Lunar and Martian Analog Missions (2024-2032) ($MN)
  • Table 12 Global Microgravity Drug Research Market Outlook, By Other Platforms (2024-2032) ($MN)
  • Table 13 Global Microgravity Drug Research Market Outlook, By Drug (2024-2032) ($MN)
  • Table 14 Global Microgravity Drug Research Market Outlook, By Small Molecule Drugs (2024-2032) ($MN)
  • Table 15 Global Microgravity Drug Research Market Outlook, By Regenerative Medicines (2024-2032) ($MN)
  • Table 16 Global Microgravity Drug Research Market Outlook, By Biologics (2024-2032) ($MN)
  • Table 17 Global Microgravity Drug Research Market Outlook, By Enzyme Therapies (2024-2032) ($MN)
  • Table 18 Global Microgravity Drug Research Market Outlook, By Vaccines (2024-2032) ($MN)
  • Table 19 Global Microgravity Drug Research Market Outlook, By Technology (2024-2032) ($MN)
  • Table 20 Global Microgravity Drug Research Market Outlook, By Molecular Docking & Simulation (2024-2032) ($MN)
  • Table 21 Global Microgravity Drug Research Market Outlook, By 3D Cell Culture & Organoids (2024-2032) ($MN)
  • Table 22 Global Microgravity Drug Research Market Outlook, By Genomic & Transcriptomic Profiling (2024-2032) ($MN)
  • Table 23 Global Microgravity Drug Research Market Outlook, By Protein Crystallization (2024-2032) ($MN)
  • Table 24 Global Microgravity Drug Research Market Outlook, By AI-Based Drug Discovery (2024-2032) ($MN)
  • Table 25 Global Microgravity Drug Research Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 26 Global Microgravity Drug Research Market Outlook, By Application (2024-2032) ($MN)
  • Table 27 Global Microgravity Drug Research Market Outlook, By Material Science (2024-2032) ($MN)
  • Table 28 Global Microgravity Drug Research Market Outlook, By Space Exploration (2024-2032) ($MN)
  • Table 29 Global Microgravity Drug Research Market Outlook, By Combustion Science (2024-2032) ($MN)
  • Table 30 Global Microgravity Drug Research Market Outlook, By Drug Development & Pharmaceutical Research (2024-2032) ($MN)
  • Table 31 Global Microgravity Drug Research Market Outlook, By Fluid Dynamics (2024-2032) ($MN)
  • Table 32 Global Microgravity Drug Research Market Outlook, By Biotechnology (2024-2032) ($MN)
  • Table 33 Global Microgravity Drug Research Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 34 Global Microgravity Drug Research Market Outlook, By End User (2024-2032) ($MN)
  • Table 35 Global Microgravity Drug Research Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 36 Global Microgravity Drug Research Market Outlook, By Commercial Space Companies (2024-2032) ($MN)
  • Table 37 Global Microgravity Drug Research Market Outlook, By Pharmaceutical Companies (2024-2032) ($MN)
  • Table 38 Global Microgravity Drug Research Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 39 Global Microgravity Drug Research Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.