封面
市场调查报告书
商品编码
1822400

2032 年氢气混合基础设施市场预测:按成分、安全性、混合比、注入点、最终用户和地区进行的全球分析

Hydrogen Blending Infrastructure Market Forecasts to 2032 - Global Analysis By Component (Compressors, Blending Skids, H2 Sensors, Pipeline Upgrades, and Storage Tanks), Safety, Blending Ratio, Injection Point, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球氢气混合基础设施市场预计在 2025 年达到 31 亿美元,到 2032 年将达到 104 亿美元,预测期内的复合年增长率为 18.4%。

氢能混合基础设施是指透过现有管道注入和输送氢气和天然气混合物所需的系统和组件。这包括专用注入点、压缩机和监控设备,以确保正确的混合比例和安全运作。该基础设施旨在利用现有的天然气网络,以经济高效且快速的方式为家庭、企业和工业用户供应清洁燃料,同时减少碳排放并支持向氢能经济转型。

据国际能源总署称,现有的天然气管道正在进行维修,以混合氢气,减少供暖和发电产生的二氧化碳排放。

氢能产业的成长

氢能市场发展的根本驱动力在于全球氢能产业的扩张,以及各国为实现脱碳目标而製定的雄心勃勃的国家战略。将氢气掺混到现有的天然气天然气网中,被认为是减少暖气和发电碳排放的关键转型策略。这种方法充分利用了现有的基础设施,并立即产生了对安全运输、计量和利用氢-天然气混合物所需组件的需求,从而加速了纯氢经济的发展。

初期投资成本高

改造现有的天然气基础设施以适应氢气需要非常高的资本投入。这包括改造管道、压缩机站、计量系统和最终用户设备,以适应氢气的特性。氢气会导致材料脆化,需要更坚固的材料。这些高昂的前期成本对公用事业公司和政府构成了巨大的经济障碍,并可能减缓大规模氢混合计划的采用和部署速度。

国际合作与伙伴关係

一个重大机会在于建立政府、能源公司和技术提供者之间的国际合作与伙伴关係。此类联盟可以汇集资金,共用技术知识和研发风险,并建立通用的标准和安全通讯协定。联合计划可以大规模地展示可行性,加速技术开发,并建立一体化的全球供应链。

混合中的技术挑战

市场持续面临与氢气混合相关的技术挑战,主要是材料相容性和能量含量差异。氢气会使非设计用于氢气的钢管和塑胶管线脆化,导致管道失效。此外,氢气的体积能量密度也低于天然气,因此需要对燃烧系统进行调整并监测气体质量,以确保安全和效率。解决这些复杂的工程难题对于获得监管部门和公众的认可至关重要。

COVID-19的影响:

新冠疫情最初因经济不确定性和供应链中断而推迟了先导计画和投资。然而,疫情的长期影响是正面的,因为许多政府的復苏战略都将绿氢能作为经济奖励策略和復苏的基石。这促使政策支持和资金公告增加,对能源安全和脱碳的关注度增加,并最终加速了氢能混合基础设施发展的长期规划和努力。

压缩机市场预计将成为预测期内最大的市场

压缩机领域预计将在预测期内占据最大的市场份额,因为它在维持整个天然气管网的管道压力和流量方面发挥关键作用。氢气的低密度要求压缩机更频繁地运行,并且需要改进的密封件和组件来处理不同的气体特性。作为确保可靠天然气运输的核心机械资产,改造或更换现有的天然气压缩机以用于混合应用需要大量且必要的资本投资,这推动了该领域占据主导地位的收益份额。

预计在预测期内,洩漏侦测部分将以最高的复合年增长率成长。

预计洩漏检测领域将在预测期内实现最高成长率。这是由于氢气分子尺寸小且高度易燃,使得洩漏检测成为至关重要的安全隐患。更严格的安全法规和公共保障要求要求采用先进、灵敏且专用于氢气的监测技术。这导致对创新解决方案的需求激增,例如声波感测器、光纤和基于示踪剂的系统,这些解决方案可以快速定位混合气体网路中的洩漏,从而使洩漏检测成为混合气体基础设施市场中成长最快的领域。

占比最大的地区:

由于各国政府(尤其是日本、韩国和中国)对氢能策略的大力投入和投资,预计亚太地区将在预测期内占据最大的市场份额。这些国家正在积极寻求将氢能作为清洁能源,以确保能源安全并实现脱碳目标。大型工业气体公司、强大的相关设备製造基础以及在城市燃气管网中进行的大规模先导计画,巩固了亚太地区作为最大、最具活力的市场地位。

复合年增长率最高的地区:

预计美国地区在预测期内的复合年增长率最高。这得归功于近期强有力的政策支持,例如《通膨削减法案》(IRA),该法案为清洁氢气生产和基础设施建设提供了强有力的奖励。众多混合先导计画,加上某些州和加拿大各省对广泛天然气管网进行脱碳改造的需求,正在推动市场快速发展。私人能源公司的高额投资和对技术创新的重视,推动了该地区的最高成长率。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球氢混合基础设施市场(按组件)

  • 压缩机
  • 混合橇
  • 氢气感测器
  • 管道升级
  • 储存槽

6. 全球氢气混合基础设施市场(依安全性)

  • 洩漏检测
  • 混合控制系统
  • 认证

7. 全球氢气混合基础设施市场(以混合比例)

  • 低(5% 或更低)
  • 中(5-20​​%)
  • 高(超过 20%)

8. 全球氢气混合基础设施市场(按註入点)

  • 上游
  • 中产阶级
  • 下游

9. 全球氢混合基础设施市场(依最终用户)

  • 住宅暖气
  • 工业热
  • 发电
  • 运输加油

第十章全球氢混合基础设施市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Air Products
  • Linde
  • Messer Group
  • Praxair
  • Air Liquide
  • Chart Industries
  • Hydrogenics
  • Nel ASA
  • Plug Power
  • ITM Power
  • McPhy Energy
  • Ballard Power Systems
  • Cummins
  • Siemens Energy
  • Doosan Fuel Cell
  • Toshiba Energy Systems
Product Code: SMRC31154

According to Stratistics MRC, the Global Hydrogen Blending Infrastructure Market is accounted for $3.1 billion in 2025 and is expected to reach $10.4 billion by 2032 growing at a CAGR of 18.4% during the forecast period. Hydrogen blending infrastructure refers to the systems and components required to inject and transport a mixture of hydrogen and natural gas through existing pipelines. It includes specialized injection points, compressors, and monitoring equipment to ensure the correct blend ratio and safe operation. The infrastructure is designed to leverage existing natural gas networks, providing a cost-effective and rapid way to deliver cleaner-burning fuel to homes, businesses, and industrial users, while reducing carbon emissions and supporting the transition to a hydrogen-based economy.

According to the IEA, existing natural gas pipelines are being retrofitted to blend hydrogen, reducing carbon emissions from heating and power generation.

Market Dynamics:

Driver:

Growth of hydrogen energy sector

The market is fundamentally driven by the global expansion of the hydrogen energy sector, supported by ambitious national strategies to achieve decarbonization goals. Blending hydrogen into existing natural gas grids is recognized as a crucial transitional strategy to reduce carbon emissions from heating and power generation. This approach leverages current infrastructure, creating immediate demand for the necessary components to safely transport, meter, and utilize hydrogen-natural gas mixtures, thereby accelerating the development of a pure hydrogen economy.

Restraint:

High initial investment costs

A significant restraint is the exceptionally high capital expenditure required to retrofit existing natural gas infrastructure for hydrogen compatibility. This includes upgrading pipelines, compressor stations, metering systems, and end-user appliances to withstand hydrogen's properties, which can cause embrittlement and require more robust materials. These substantial upfront costs pose a major financial barrier for utility companies and governments, potentially slowing the pace of adoption and deployment of large-scale hydrogen blending projects.

Opportunity:

International collaborations and partnerships

A major opportunity lies in forming international collaborations and partnerships between governments, energy companies, and technology providers. These alliances can pool financial resources, share technical knowledge and R&D risks, and establish common standards and safety protocols. Joint projects can demonstrate feasibility at scale, accelerate technology development, and create integrated global supply chains, reducing individual investment burdens and fostering a more cohesive and rapid advancement of the hydrogen blending ecosystem worldwide.

Threat:

Technical challenges in blending

The market faces a persistent threat from technical challenges associated with hydrogen blending, primarily material compatibility and varying energy content. Hydrogen can embrittle steel and plastic pipelines not designed for it, potentially leading to failures. Its lower volumetric energy density compared to natural gas also requires adjustments in combustion systems and gas quality monitoring to ensure safety and efficiency. Resolving these complex engineering hurdles is critical to gaining regulatory and public acceptance.

Covid-19 Impact:

The COVID-19 pandemic initially delayed pilot projects and investments due to economic uncertainty and supply chain disruptions. However, the long-term effect was positive, as recovery strategies from many governments heavily featured green hydrogen as a cornerstone for economic stimulus and building back better. This led to increased policy support, funding announcements, and a heightened focus on energy security and decarbonization, ultimately accelerating long-term planning and commitment to hydrogen blending infrastructure development.

The compressors segment is expected to be the largest during the forecast period

The compressors segment is expected to account for the largest market share during the forecast period, owing to their critical role in maintaining pipeline pressure and flow rates throughout the gas network. Hydrogen's lower density requires compressors to work more frequently and with modified seals and components to handle the different gas properties. As the core mechanical asset ensuring reliable gas transmission, the need to retrofit or replace existing natural gas compressors for blending applications represents a massive and essential capital investment, driving this segment's dominant revenue share.

The leak detection segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the leak detection segment is predicted to witness the highest growth rate, reinforced by hydrogen's small molecular size and high flammability, which make leak detection a paramount safety concern. Stricter safety regulations and public assurance requirements will mandate advanced, sensitive, and hydrogen-specific monitoring technologies. This creates a surge in demand for innovative solutions like acoustic sensors, fiber optics, and tracer-based systems that can quickly pinpoint leaks in blended gas networks, making leak detection the fastest-growing segment within the blending infrastructure market.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, ascribed to massive government commitments and investments in hydrogen strategies, particularly from Japan, South Korea, and China. These countries are aggressively pursuing hydrogen as a clean energy vector to ensure energy security and meet decarbonization targets. The presence of major industrial gas companies, a strong manufacturing base for related equipment, and large-scale pilot projects for blending in city gas networks solidify Asia Pacific's position as the largest and most active market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with recent strong policy support, such as the U.S. Inflation Reduction Act (IRA), which provides significant incentives for clean hydrogen production and infrastructure. Numerous pilot projects for blending in specific states and Canadian provinces, coupled with a need to decarbonize extensive natural gas networks, are driving rapid market development. High investment from private energy firms and a focus on technology innovation contribute to the region's highest growth rate.

Key players in the market

Some of the key players in Hydrogen Blending Infrastructure Market include Air Products, Linde, Messer Group, Praxair, Air Liquide, Chart Industries, Hydrogenics, Nel ASA, Plug Power, ITM Power, McPhy Energy, Ballard Power Systems, Cummins, Siemens Energy, Doosan Fuel Cell, and Toshiba Energy Systems.

Key Developments:

In September 2025, Air Liquide and Siemens Energy announced a strategic joint venture to develop and standardize integrated compressor and blending station packages for natural gas networks. The partnership aims to offer utilities a single-source, scalable solution to accelerate the adoption of up to 20% hydrogen blending.

In August 2025, Linde inaugurated its first large-scale hydrogen blending facility in the Ruhr region of Germany. The project directly injects green hydrogen, produced on-site via a dedicated ITM Power electrolyzer, into a public natural gas grid, supplying over 100,000 households with a blended energy mix.

In July 2025, a coalition including Cummins, Nel ASA, and Chart Industries published a new safety and compliance protocol for metering and odorization in hydrogen-natural gas blends. This industry-first guideline is designed to ensure uniformity and safety for pipeline operators across North America and Europe.

Components Covered:

  • Compressors
  • Blending Skids
  • H2 Sensors
  • Pipeline Upgrades
  • Storage Tanks

Safeties Covered:

  • Leak Detection
  • Blending Control Systems
  • Certifications

Blending Ratios Covered:

  • Low (<=5%)
  • Medium (5-20%)
  • High (>20%)

Injection Points Covered:

  • Upstream
  • Midstream
  • Downstream

End Users Covered:

  • Residential Heating
  • Industrial Heat
  • Power Generation
  • Transport Fueling

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hydrogen Blending Infrastructure Market, By Component

  • 5.1 Introduction
  • 5.2 Compressors
  • 5.3 Blending Skids
  • 5.4 H2 Sensors
  • 5.5 Pipeline Upgrades
  • 5.6 Storage Tanks

6 Global Hydrogen Blending Infrastructure Market, By Safety

  • 6.1 Introduction
  • 6.2 Leak Detection
  • 6.3 Blending Control Systems
  • 6.4 Certifications

7 Global Hydrogen Blending Infrastructure Market, By Blending Ratio

  • 7.1 Introduction
  • 7.2 Low (<=5%)
  • 7.3 Medium (5-20%)
  • 7.4 High (>20%)

8 Global Hydrogen Blending Infrastructure Market, By Injection Point

  • 8.1 Introduction
  • 8.2 Upstream
  • 8.3 Midstream
  • 8.4 Downstream

9 Global Hydrogen Blending Infrastructure Market, By End User

  • 9.1 Introduction
  • 9.2 Residential Heating
  • 9.3 Industrial Heat
  • 9.4 Power Generation
  • 9.5 Transport Fueling

10 Global Hydrogen Blending Infrastructure Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Air Products
  • 12.2 Linde
  • 12.3 Messer Group
  • 12.4 Praxair
  • 12.5 Air Liquide
  • 12.6 Chart Industries
  • 12.7 Hydrogenics
  • 12.8 Nel ASA
  • 12.9 Plug Power
  • 12.10 ITM Power
  • 12.11 McPhy Energy
  • 12.12 Ballard Power Systems
  • 12.13 Cummins
  • 12.14 Siemens Energy
  • 12.15 Doosan Fuel Cell
  • 12.16 Toshiba Energy Systems

List of Tables

  • Table 1 Global Hydrogen Blending Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Hydrogen Blending Infrastructure Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Hydrogen Blending Infrastructure Market Outlook, By Compressors (2024-2032) ($MN)
  • Table 4 Global Hydrogen Blending Infrastructure Market Outlook, By Blending Skids (2024-2032) ($MN)
  • Table 5 Global Hydrogen Blending Infrastructure Market Outlook, By H2 Sensors (2024-2032) ($MN)
  • Table 6 Global Hydrogen Blending Infrastructure Market Outlook, By Pipeline Upgrades (2024-2032) ($MN)
  • Table 7 Global Hydrogen Blending Infrastructure Market Outlook, By Storage Tanks (2024-2032) ($MN)
  • Table 8 Global Hydrogen Blending Infrastructure Market Outlook, By Safety (2024-2032) ($MN)
  • Table 9 Global Hydrogen Blending Infrastructure Market Outlook, By Leak Detection (2024-2032) ($MN)
  • Table 10 Global Hydrogen Blending Infrastructure Market Outlook, By Blending Control Systems (2024-2032) ($MN)
  • Table 11 Global Hydrogen Blending Infrastructure Market Outlook, By Certifications (2024-2032) ($MN)
  • Table 12 Global Hydrogen Blending Infrastructure Market Outlook, By Blending Ratio (2024-2032) ($MN)
  • Table 13 Global Hydrogen Blending Infrastructure Market Outlook, By Low (<=5%) (2024-2032) ($MN)
  • Table 14 Global Hydrogen Blending Infrastructure Market Outlook, By Medium (5-20%) (2024-2032) ($MN)
  • Table 15 Global Hydrogen Blending Infrastructure Market Outlook, By High (>20%) (2024-2032) ($MN)
  • Table 16 Global Hydrogen Blending Infrastructure Market Outlook, By Injection Point (2024-2032) ($MN)
  • Table 17 Global Hydrogen Blending Infrastructure Market Outlook, By Upstream (2024-2032) ($MN)
  • Table 18 Global Hydrogen Blending Infrastructure Market Outlook, By Midstream (2024-2032) ($MN)
  • Table 19 Global Hydrogen Blending Infrastructure Market Outlook, By Downstream (2024-2032) ($MN)
  • Table 20 Global Hydrogen Blending Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 21 Global Hydrogen Blending Infrastructure Market Outlook, By Residential Heating (2024-2032) ($MN)
  • Table 22 Global Hydrogen Blending Infrastructure Market Outlook, By Industrial Heat (2024-2032) ($MN)
  • Table 23 Global Hydrogen Blending Infrastructure Market Outlook, By Power Generation (2024-2032) ($MN)
  • Table 24 Global Hydrogen Blending Infrastructure Market Outlook, By Transport Fueling (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.