封面
市场调查报告书
商品编码
1833480

2032 年电动车电池回收再利用市场预测:按电池化学成分、回收流程、应用、最终用户和地区进行的全球分析

EV Battery Recycling & Reuse Market Forecasts to 2032 - Global Analysis By Battery Chemistry, Recycling Process, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球电动车电池回收再利用市场预计在 2025 年达到 94.8 亿美元,到 2032 年将达到 1,170.6 亿美元,预测期内的复合年增长率为 43.2%。

电动车 (EV) 电池的回收和再利用是指收集、再利用废弃电池或消费后电池,并将其重新引入价值链,以最大限度地提高资源效率和永续性。回收利用是指从废弃电池中提取有价值的材料,例如锂、钴、镍和锰,并将其用于新电池的生产,从而减少对采矿的依赖并最大限度地减少环境影响。再利用(二次利用)是指将部分劣化的电池重新用于能源储存系统、电网稳定和备用电源等需求较低的用途。回收和再利用都支持循环经济的目标,减少废弃物,节约资源,并提高全球电动车产业的永续性。

扩大电动车的使用

电动车的快速普及推动了电动车电池回收和再利用市场的强劲成长。随着电池需求的加速成长,废弃电池的数量也不断增加,这为材料回收、二次利用和循环供应链创造了巨大的机会。这一势头正在推动回收技术的创新,减少对原生矿物的依赖,并增强整个电动车生态系统的永续性。监管支援以及与原始设备製造商的合作正在进一步加速市场扩大,将电池再利用定位为成本效益、资源安全和环境影响的战略槓桿。

先进系统高成本

先进回收系统的高成本不仅增加了营运成本,还阻碍了小型企业的投资,阻碍了电动车电池再利用市场的广泛普及。这限制了扩充性,减缓了基础设施建设,并限制了最尖端科技的取得。结果,地区差距扩大,创新停滞,循环经济目标受挫。如果没有经济高效的解决方案,市场成长将继续受到限制,从而延缓永续电池生命週期管理带来的环境和经济效益。

技术进步

技术进步正在透过提高材料回收效率、降低加工成本和实现闭合迴路系统来彻底改变市场。湿式冶金、人工智慧辅助分选和二次电池应用领域的创新正在推动可扩展性并减少环境足迹。这些改进吸引了投资,支持了法规遵循,培育了循环经济模式,并使电池再利用具有商业性可行性。技术进步将创造新的价值链,提高资源安全性,并加速汽车和储能产业的永续成长。

电池化学和设计复杂性

电池化学和设计的复杂性为电动车电池回收和再利用市场带来了重大障碍。电池规格、化学成分和包装的差异使得标准化回收流程变得困难且成本高昂。拆卸复杂的电池需要专门的设备、专业知识和时间,这会增加营运成本并降低效率。这些挑战减缓了材料回收的速度,降低了盈利,限制了大规模应用,并抑制了整体回收和再利用工作的成长和有效性。

COVID-19的影响:

新冠疫情扰乱了全球供应链,减缓了电动车的生产和电池回收倡议。停工和劳动力短缺减缓了工厂的运营,人员流动减少降低了电池回收率。然而,这场危机也加速了数位化和绿色復苏的政策势头,刺激了对永续基础设施的新投资。随着经济復苏,在强劲需求、经济奖励策略和资源安全意识增强的推动下,电动车电池回收和再利用市场预计将快速成长。

预测期内直接回收部分预计将成为最大的部分

预计直接回收领域将在预测期内占据最大市场份额,因为它能够保持电池材料的结构完整性。与传统方法不同,直接回收能够保留阴极结构,从而以最少的化学处理实现经济高效的回收。这种方法降低了能耗,并支援闭合迴路製造。随着原始设备製造商 (OEM) 优先考虑永续性和循环性,直接回收正逐渐成为大规模电池回收的合适解决方案,其经济和环境效益与全球脱碳目标一致。

预计预测期内湿式冶金领域将以最高的复合年增长率成长。

湿式冶金因其卓越的回收率和环境效益,预计将在预测期内实现最高成长率。此方法使用水溶液萃取高纯度的锂、钴和镍,适用于多种电池化学品。与火法冶金相比,湿式排放较低,且更具扩充性。监管支持和对关键矿物日益增长的需求正在加速湿式冶金的应用。随着永续性成为工业策略的核心,湿式冶金製程可能在确保供应链安全方面发挥关键作用。

占比最大的地区:

由于其强大的电池供应链和积极的政府政策,预计亚太地区将在预测期内占据最大的市场份额。中国、日本和韩国等国家在电池生产和回收基础设施方面处于领先地位,并受到积极的电气化目标和循环经济计画的支持。该地区受益于较高的消费者采用率、策略性投资和技术领先地位。这些因素共同使亚太地区成为电动车电池回收再利用的中心,推动全球发展和创新。

复合年增长率最高的地区:

由于电动车的快速普及、有利的法规结构以及国内回收能力投资的不断增加,预计北美地区在预测期内的复合年增长率最高。美国和加拿大正在发展基础设施,以减少对关键矿产进口的依赖并增强能源安全。联邦激励措施、官民合作关係以及二次利用技术创新正在推动市场扩张。随着永续性成为战略重点,北美已成为电动车电池回收和再利用技术的关键成长前沿。

免费客製化服务

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球电动车电池回收再利用市场(按电池化学)

  • 锂离子电池
    • 磷酸锂铁(LFP)
    • 锂镍钴铝氧化物(NCA)
    • 锂镍锰钴氧化物(NMC)
  • 镍氢电池
  • 铅酸电池
  • 其他电池化学

6. 全球电动车电池回收再利用市场(依回收流程)

  • 火法冶金
  • 湿式冶金
  • 直接回收
  • 其他回收工艺

7. 全球电动车电池回收再利用市场(按应用)

  • 第二人生能源储存
    • 可再生能源整合
    • 住宅和商业存储
    • 电网储能
  • 低速电动车
  • 工业应用
  • 其他用途

8. 全球电动车电池回收再利用市场(按最终用户)

  • 汽车原厂设备製造商
  • 回收公司
  • 能源公用事业
  • 政府和监管机构
  • 其他最终用户

9. 全球电动车电池回收再利用市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十一章 公司概况

  • Umicore
  • American Battery Technology Company(ABTC)
  • Li-Cycle Corporation
  • Ecobat
  • Gravita India Ltd.
  • Glencore plc
  • Cirba Solutions
  • East Penn Manufacturing
  • Gopher Resource
  • RecycLiCo Battery Materials Inc.
  • Aqua Metals
  • Ganfeng Lithium Group Co., Ltd
  • LOHUM
  • Exide Industries Limited
  • Hosokawa Micron Group
  • EnerSys
  • Attero Recycling Pvt. Ltd.
  • Call2Recycle
Product Code: SMRC31313

According to Stratistics MRC, the Global EV Battery Recycling & Reuse Market is accounted for $9.48 billion in 2025 and is expected to reach $117.06 billion by 2032 growing at a CAGR of 43.2% during the forecast period. Electric Vehicle (EV) battery recycling and reuse refers to the process of recovering, repurposing, and reintroducing used or end-of-life batteries into the value chain to maximize resource efficiency and sustainability. Recycling involves extracting valuable materials such as lithium, cobalt, nickel, and manganese from spent batteries for use in new battery production, thereby reducing dependence on mining and minimizing environmental impact. Reuse, or second-life applications, repurposes partially degraded batteries for less demanding uses like energy storage systems, grid stabilization, or backup power. Together, recycling and reuse support circular economy goals, lower waste, conserve resources, and enhance EV industry sustainability worldwide.

Market Dynamics:

Driver:

Growing EV Adoption

Surging EV adoption is catalyzing robust growth in the EV battery recycling and reuse market. As battery demand accelerates, end-of-life volumes rise, unlocking vast opportunities for material recovery, second-life applications, and circular supply chains. This momentum drives innovation in recycling tech, reduces reliance on virgin minerals, and enhances sustainability across the EV ecosystem. Regulatory support and OEM partnerships further amplify market expansion, positioning battery reuse as a strategic lever for cost efficiency, resource security, and environmental impact.

Restraint:

High cost of advanced systems

High costs of advanced recycling systems hinder widespread adoption in the EV battery reuse market by inflating operational expenses and deterring investment from smaller players. This limits scalability, slows infrastructure development, and restricts access to cutting-edge technologies. As a result, regional disparities widen, innovation stalls, and circular economy goals face setbacks. Without cost-effective solutions, market growth remains constrained, delaying environmental and economic benefits tied to sustainable battery lifecycle management.

Opportunity:

Technological Improvements

Technological advancements are revolutionizing the market by enhancing material recovery efficiency, reducing processing costs, and enabling closed-loop systems. Innovations in hydrometallurgy, AI-driven sorting, and second-life battery applications are driving scalability and environmental impact reduction. These improvements attract investment, support regulatory compliance, and foster circular economy models, making battery reuse commercially viable. As tech evolves, it unlocks new value chains, boosts resource security, and accelerates sustainable growth across automotive and energy storage sectors.

Threat:

Battery Chemistry & Design Complexity

The complexity of battery chemistry and design poses a significant hindrance to the EV battery recycling and reuse market. Variations in cell formats, chemistries, and packaging make standardized recycling processes difficult and costly. Dismantling intricate designs requires specialized equipment, expertise, and time, which increases operational expenses and lowers efficiency. Such challenges slow down material recovery, reduce profitability, and limit large-scale adoption, restraining the overall growth and effectiveness of recycling and reuse initiatives.

Covid-19 Impact:

The COVID-19 pandemic disrupted global supply chains, delaying EV production and battery recycling initiatives. Lockdowns and labor shortages slowed facility operations, while reduced mobility dampened battery collection rates. However, the crisis also accelerated digitalization and policy momentum for green recovery, prompting renewed investment in sustainable infrastructure. As economies rebound, the EV battery recycling and reuse market is poised for rapid growth, driven by pent-up demand, stimulus packages, and heightened awareness of resource security.

The direct recycling segment is expected to be the largest during the forecast period

The direct recycling segment is expected to account for the largest market share during the forecast period because of its ability to retain the structural integrity of battery materials. Unlike conventional methods, direct recycling preserves cathode architecture, enabling cost-effective recovery with minimal chemical processing. This approach reduces energy consumption and supports closed-loop manufacturing. As OEMs prioritize sustainability and circularity, direct recycling emerges as a preferred solution for large-scale battery recovery, offering economic and environmental advantages that align with global decarbonization goals.

The hydrometallurgical segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hydrometallurgical segment is predicted to witness the highest growth rate due to its superior recovery rates and environmental benefits. This method uses aqueous solutions to extract lithium, cobalt, and nickel with high purity, making it suitable for diverse battery chemistries. Compared to pyrometallurgy, it offers lower emissions and greater scalability. Regulatory support and rising demand for critical minerals are accelerating adoption. As sustainability becomes central to industrial strategy, hydrometallurgical processes will play a pivotal role in securing supply chains.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to robust battery supply chain, and proactive government policies. Countries like China, Japan, and South Korea lead in battery production and recycling infrastructure, supported by aggressive electrification targets and circular economy initiatives. The region benefits from high consumer adoption, strategic investments, and technological leadership. These factors collectively position Asia Pacific as the epicenter of EV battery recycling and reuse, driving global momentum and innovation.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR owing to rapid EV adoption, favorable regulatory frameworks, and growing investment in domestic recycling capabilities. The U.S. and Canada are scaling infrastructure to reduce reliance on imported critical minerals and enhance energy security. Federal incentives, public-private partnerships, and innovation in second-life applications are accelerating market expansion. As sustainability becomes a strategic priority, North America is emerging as a key growth frontier for EV battery recycling and reuses technologies.

Key players in the market

Some of the key players in EV Battery Recycling & Reuse Market include Umicore, American Battery Technology Company (ABTC), Li-Cycle Corporation, Ecobat, Gravita India Ltd., Glencore plc, Cirba Solutions, East Penn Manufacturing, Gopher Resource, RecycLiCo Battery Materials Inc., Aqua Metals, Ganfeng Lithium Group Co., Ltd, LOHUM, Exide Industries Limited, Hosokawa Micron Group, EnerSys, Attero Recycling Pvt. Ltd., and Call2Recycle.

Key Developments:

In August 2025, Lithium Argentina and Ganfeng plan to merge their adjacent brine lithium assets (Pozuelos-Pastos Grandes, Pastos Grandes, Sal de la Puna) into a joint venture (JV) with Ganfeng owning 67% and Lithium Argentina 33%. The JV aims for up to 150,000 tonnes per annum of lithium carbonate equivalent using a mix of direct lithium extraction and solar evaporation, with financing and a feasibility study underway.

In December 2024, Hyundai Motor and Kia have signed a MoU with Exide Energy Solutions to localize EV battery production in India, focusing on lithium-iron-phosphate (LFP) cells. This strategic move aims to cut costs, strengthen the EV supply chain, and enhance competitiveness in India's booming EV market.

Battery Chemistries Covered:

  • Lithium-Ion Batteries
  • Nickel-Metal Hydride Batteries
  • Lead-Acid Batteries
  • Other Battery Chemistries

Recycling Processes Covered:

  • Pyrometallurgical
  • Hydrometallurgical
  • Direct Recycling
  • Other Recycling Processes

Applications Covered:

  • Second-Life Energy Storage
  • Low-Speed Electric Vehicles
  • Industrial Applications
  • Other Applications

End Users Covered:

  • Automotive OEMs
  • Recycling Companies
  • Energy Utilities
  • Government & Regulatory Bodies
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global EV Battery Recycling & Reuse Market, By Battery Chemistry

  • 5.1 Introduction
  • 5.2 Lithium-Ion Batteries
    • 5.2.1 Lithium Iron Phosphate (LFP)
    • 5.2.2 Lithium Nickel Cobalt Aluminum Oxide (NCA)
    • 5.2.3 Lithium Nickel Manganese Cobalt Oxide (NMC)
  • 5.3 Nickel-Metal Hydride Batteries
  • 5.4 Lead-Acid Batteries
  • 5.5 Other Battery Chemistries

6 Global EV Battery Recycling & Reuse Market, By Recycling Process

  • 6.1 Introduction
  • 6.2 Pyrometallurgical
  • 6.3 Hydrometallurgical
  • 6.4 Direct Recycling
  • 6.5 Other Recycling Processes

7 Global EV Battery Recycling & Reuse Market, By Application

  • 7.1 Introduction
  • 7.2 Second-Life Energy Storage
    • 7.2.1 Renewable Energy Integration
    • 7.2.2 Residential & Commercial Storage
    • 7.2.3 Grid Energy Storage
  • 7.3 Low-Speed Electric Vehicles
  • 7.4 Industrial Applications
  • 7.5 Other Applications

8 Global EV Battery Recycling & Reuse Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive OEMs
  • 8.3 Recycling Companies
  • 8.4 Energy Utilities
  • 8.5 Government & Regulatory Bodies
  • 8.6 Other End Users

9 Global EV Battery Recycling & Reuse Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Umicore
  • 11.2 American Battery Technology Company (ABTC)
  • 11.3 Li-Cycle Corporation
  • 11.4 Ecobat
  • 11.5 Gravita India Ltd.
  • 11.6 Glencore plc
  • 11.7 Cirba Solutions
  • 11.8 East Penn Manufacturing
  • 11.9 Gopher Resource
  • 11.10 RecycLiCo Battery Materials Inc.
  • 11.11 Aqua Metals
  • 11.12 Ganfeng Lithium Group Co., Ltd
  • 11.13 LOHUM
  • 11.14 Exide Industries Limited
  • 11.15 Hosokawa Micron Group
  • 11.16 EnerSys
  • 11.17 Attero Recycling Pvt. Ltd.
  • 11.18 Call2Recycle

List of Tables

  • Table 1 Global EV Battery Recycling & Reuse Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global EV Battery Recycling & Reuse Market Outlook, By Battery Chemistry (2024-2032) ($MN)
  • Table 3 Global EV Battery Recycling & Reuse Market Outlook, By Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 4 Global EV Battery Recycling & Reuse Market Outlook, By Lithium Iron Phosphate (LFP) (2024-2032) ($MN)
  • Table 5 Global EV Battery Recycling & Reuse Market Outlook, By Lithium Nickel Cobalt Aluminum Oxide (NCA) (2024-2032) ($MN)
  • Table 6 Global EV Battery Recycling & Reuse Market Outlook, By Lithium Nickel Manganese Cobalt Oxide (NMC) (2024-2032) ($MN)
  • Table 7 Global EV Battery Recycling & Reuse Market Outlook, By Nickel-Metal Hydride Batteries (2024-2032) ($MN)
  • Table 8 Global EV Battery Recycling & Reuse Market Outlook, By Lead-Acid Batteries (2024-2032) ($MN)
  • Table 9 Global EV Battery Recycling & Reuse Market Outlook, By Other Battery Chemistries (2024-2032) ($MN)
  • Table 10 Global EV Battery Recycling & Reuse Market Outlook, By Recycling Process (2024-2032) ($MN)
  • Table 11 Global EV Battery Recycling & Reuse Market Outlook, By Pyrometallurgical (2024-2032) ($MN)
  • Table 12 Global EV Battery Recycling & Reuse Market Outlook, By Hydrometallurgical (2024-2032) ($MN)
  • Table 13 Global EV Battery Recycling & Reuse Market Outlook, By Direct Recycling (2024-2032) ($MN)
  • Table 14 Global EV Battery Recycling & Reuse Market Outlook, By Other Recycling Processes (2024-2032) ($MN)
  • Table 15 Global EV Battery Recycling & Reuse Market Outlook, By Application (2024-2032) ($MN)
  • Table 16 Global EV Battery Recycling & Reuse Market Outlook, By Second-Life Energy Storage (2024-2032) ($MN)
  • Table 17 Global EV Battery Recycling & Reuse Market Outlook, By Renewable Energy Integration (2024-2032) ($MN)
  • Table 18 Global EV Battery Recycling & Reuse Market Outlook, By Residential & Commercial Storage (2024-2032) ($MN)
  • Table 19 Global EV Battery Recycling & Reuse Market Outlook, By Grid Energy Storage (2024-2032) ($MN)
  • Table 20 Global EV Battery Recycling & Reuse Market Outlook, By Low-Speed Electric Vehicles (2024-2032) ($MN)
  • Table 21 Global EV Battery Recycling & Reuse Market Outlook, By Industrial Applications (2024-2032) ($MN)
  • Table 22 Global EV Battery Recycling & Reuse Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 23 Global EV Battery Recycling & Reuse Market Outlook, By End User (2024-2032) ($MN)
  • Table 24 Global EV Battery Recycling & Reuse Market Outlook, By Automotive OEMs (2024-2032) ($MN)
  • Table 25 Global EV Battery Recycling & Reuse Market Outlook, By Recycling Companies (2024-2032) ($MN)
  • Table 26 Global EV Battery Recycling & Reuse Market Outlook, By Energy Utilities (2024-2032) ($MN)
  • Table 27 Global EV Battery Recycling & Reuse Market Outlook, By Government & Regulatory Bodies (2024-2032) ($MN)
  • Table 28 Global EV Battery Recycling & Reuse Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.