封面
市场调查报告书
商品编码
1836411

先进封装技术市场预测(至2032年):按封装技术、互连方法、材料类型、装置架构、最终用户和地区进行的全球分析

Advanced Packaging Technologies Market Forecasts to 2032 - Global Analysis By Packaging Technology, Interconnect Method, Material Type, Device Architecture, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球先进封装技术市场预计在 2025 年达到 295 亿美元,到 2032 年将达到 506 亿美元,预测期内的复合年增长率为 8.0%。

先进封装技术专注于创新的半导体封装解决方案,例如2.5D/3D IC、覆晶、晶圆层次电子构装和异质整合。这些技术可提升家用电子电器、通讯、汽车和工业应用领域设备的性能、能源效率和小型化程度。对高效能运算、物联网设备和小型化电子产品日益增长的需求正在推动这一领域的成长。温度控管互连技术和製造流程的进步,加上产业研发投入,正在推动全球先进封装解决方案的采用。

小型化和性能要求

微型化和高性能需求是先进封装的核心驱动力。随着装置尺寸的缩小和运算密度的提升,设计人员正在寻找能够缩短互连长度、改善散热并实现逻辑、记忆体和感测器异质整合整合的封装。此外,覆晶、晶圆级扇出和 3D 堆迭技术能够满足 AI 加速器、行动处理器和高频宽记忆体所需的电气和热性能。这种融合迫使代工厂、OSAT 和 OEM 采用先进的基板和穿透硅通孔,并在设备和製程开发方面投入巨资,以满足更严格的可靠性和产量比率目标,并降低製造过程中的差异性。

经费和研发成本高

先进封装需要大量的资本支出和持续的研发投入,这限制了其应用,尤其是在小型代工厂和OSAT厂商。晶圆级扇出、硅通孔和混合键合设备的购置和维护成本高昂,而製程认证和产量比率则需要漫长而昂贵的工程週期。此外,基板和材料的开发需要整个供应链的密切协作,这需要在工具、材料和测试能力方面投入大量的前期投资。这些经济负担提高了进入门槛,减缓了技术的采用,并限制了新参与企业的上市速度。

节能包装解决方案的需求不断增加

节能封装需求的不断增长,为供应商和整合商带来了实实在在的商机。随着处理器和人工智慧加速器不断突破功率密度的极限,降低热阻、改善功率分配并实现更严格电压调节的封装创新技术正变得具有商业性价值。此外,面向行动装置、边缘节点和资料中心的节能设计正受到原始设备製造商 (OEM) 的青睐,旨在降低营运成本并支持永续性目标。此外,节能封装可以解锁新的架构,例如基于晶片组 (chiplet) 的 SiP 和异质堆迭,从而提高每瓦性能、拓展潜在市场,并在汽车和工业应用中创造新的收益来源。

智慧财产权风险

智慧财产权侵权对先进封装领域的相关人员构成重大威胁。复杂封装涉及专有基板、键合製程和整合方案,这些都需要大量的研发投入。这些专有技术透过供应商、承包商或国际转移而流失或洩露,可能会削弱竞争优势。此外,围绕混合连接和异质整合的重迭专利和不明确的标准会增加诉讼风险并延迟商业化。企业必须透过投资强而有力的智慧财产权保护、防御性专利和安全的供应链管理来保护自己。

COVID-19的影响:

新冠疫情导致供应链衝击、工厂停工和零件短缺,从而扰乱了先进封装产业,导致产能扩张和产品发布延迟。儘管资料中心和电讯需求有所增长,但一些消费领域的需求最初有所减弱,导致復苏模式不平衡。疫情也加速了对弹性采购和自动化的投资,促使领导企业实现製造区域多元化,并优先考虑设施升级,以减轻未来的中断影响,缩短认证週期,同时提升区域製造地的价值。

预测期内,覆晶构装市场预计将成为最大的市场

预计覆晶构装领域将在预测期内占据最大的市场份额。这反映了覆晶的技术优势:更短的互连长度、更佳的热传导性能以及适用于高密度逻辑和记忆体整合的强大电气性能。处理器、GPU 和网路 ASIC 的主要 OEM蓝图继续青睐覆晶组装,许多 OSAT 厂商正在扩大凸点、底部填充和基板的生产能力,以保持产量。此外,与较新的晶圆级方法相比,覆晶成熟的供应链和成熟的产量比率实践使其具有商业性吸引力,即使扇出型和 3D 选项不断增加,也能保持其领先地位。

预测期内,直接/混合键结(Cu-Cu键结)领域预计将以最高复合年增长率成长

预计直接/混合键结(铜-铜键结)领域将在预测期内呈现最高成长率。随着装置架构师追求真正的3D整合和更高的互连密度,铜-铜混合键结比传统的焊料和微凸块方法具有更优异的电气性能和更小的尺寸。这项技术对于HBM堆迭、高阶记忆体和AI加速器尤其重要,因为它们需要超低延迟和高频宽。此外,设备供应商和代工厂正在优先考虑混合键合工具的开发和认证计划,以加速生产准备并满足逻辑和记忆体应用市场的需求。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额。这一优势得益于其丰富的生态系统,包括代工厂、OSAT、基板製造商和材料供应商,这些供应商主要集中在台湾、韩国、中国大陆、马来西亚和日本。强而有力的政府奖励措施、本地专业知识和现有规模加快了新封装流程的上市时间,而靠近主要OEM厂商和超大规模资料中心业者的地理位置则确保了高产量需求。此外,持续的产能和人才发展投资支持了产量的持续成长,进一步吸引了资本、技术伙伴关係和人才库。

复合年增长率最高的地区:

预计亚太地区在预测期内将呈现最高的复合年增长率,因为各国政府和产业正在加快对封装、测试和基板能力的投资,以从下一代半导体中获取价值。在马来西亚、中国大陆、台湾和韩国,产能扩充和激励计画正在推动混合键合和扇出型晶圆级封装等先进封装製程的快速发展。此外,人才、设备供应商和超大规模资料中心业者的集中正在缩短认证週期,并提高新封装架构的采用率。与关键客户的区域合作正在加速商业化进程,这将在预测期内显着推动区域成长。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 全面分析其他市场参与者(最多 3 家公司)
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球先进封装技术市场(依封装技术)

  • 覆晶构装
    • 覆晶球栅阵列(FCBGA)
    • 覆晶尺寸封装(FCCSP)
  • 晶圆级构装(WLP)
    • 扇出型晶圆级封装(FO-WLP/FOPLP)
    • 扇入晶圆级封装(FI-WLP)
  • 2.5D/3D积体电路(IC)封装
    • 2.5D封装
    • 3D IC堆迭
  • 系统级封装(SiP)/系统模组 (SoM)
  • 嵌入式晶片封装

6. 全球先进封装技术市场(依互连方法)

  • 焊料凸块/微凸块
  • 铜柱
  • 直接键结/混合键结(Cu-Cu键结)
  • 引线接合法

7. 全球先进封装技术市场(依材料类型)

  • 基板和中介层
    • 有机基材
    • 硅中介层
    • 玻璃基板/中介层
  • 晶片黏接材料
    • 环氧树脂基
    • 焊锡基底
  • 封装和底部填充材料
    • 环氧模塑(EMC)
    • 非导电浆料/薄膜(NCP/NCF)底部填充材料
  • 热干扰材料(TIM)
  • 键合线

8. 全球先进封装技术市场-元件架构

  • 2D IC
  • 3D IC
  • 晶片

9. 全球先进封装技术市场(依最终用户)

  • 家电
  • 资料中心和人工智慧加速器
  • 资讯科技/通讯
  • 工业和物联网
  • 医疗保健和医疗设备
  • 航太和国防
  • 其他最终用户

第 10 章:全球先进封装技术市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第 12 章:公司概况

  • Amkor Technology, Inc.
  • Taiwan Semiconductor Manufacturing Company Limited(TSMC)
  • Advanced Semiconductor Engineering Inc.(ASE Group)
  • Intel Corporation
  • JCET Group Co., Ltd.
  • Samsung Electronics Co., Ltd.
  • ASMPT SMT Solutions
  • IPC International, Inc.
  • Prodrive Technologies BV
  • Broadcom Inc.
  • Texas Instruments Incorporated
  • SK hynix Inc.
  • Applied Materials, Inc.
  • BE Semiconductor Industries NV(BESI)
  • Advanced Micro Devices, Inc.(AMD)
  • GlobalFoundries Inc.
  • Siliconware Precision Industries Co., Ltd.(SPIL)
  • J-Devices Corporation
  • DISCO Corporation
  • Ajinomoto Co., Inc.
Product Code: SMRC31535

According to Stratistics MRC, the Global Advanced Packaging Technologies Market is accounted for $29.5 billion in 2025 and is expected to reach $50.6 billion by 2032 growing at a CAGR of 8.0% during the forecast period. Advanced Packaging Technologies focuses on innovative semiconductor packaging solutions, including 2.5D/3D ICs, flip-chip, wafer-level packaging, and heterogeneous integration. These technologies enhance performance, power efficiency, and miniaturization of devices used in consumer electronics, telecommunications, automotive, and industrial applications. Growth is driven by rising demand for high-performance computing, IoT devices, and compact electronics. Advancements in thermal management interconnect technologies, and manufacturing processes, coupled with industry investment in R&D, are propelling the adoption of advanced packaging solutions globally.

Market Dynamics:

Driver:

Miniaturization and Performance Demands

Miniaturization and higher performance requirements are central drivers for advanced packaging. As devices become smaller and compute densities rise, designers demand packages that shorten interconnect lengths, improve thermal dissipation, and enable heterogeneous integration of logic, memory, and sensors. Furthermore, flip-chip, fan-out wafer-level, and 3D stacking techniques deliver the electrical and thermal performance required by AI accelerators, mobile processors, and high-bandwidth memory. This convergence forces foundries, OSATs, and OEMs to adopt advanced substrates and through-silicon vias, and to invest heavily in equipment and process development to satisfy stricter reliability and yield targets and reduce manufacturing variability.

Restraint:

High Capital and R&D Costs

Advanced packaging requires substantial capital expenditure and sustained R&D investment, which constrain adoption especially among smaller foundries and OSATs. Equipment for wafer-level fan-out, through-silicon vias, and hybrid bonding carries high purchase and maintenance costs, while process qualification and yield ramp-up demand lengthy, expensive engineering cycles. Additionally, substrate and material development requires close collaboration across supply chains, increasing upfront spending on tooling, materials, and test capabilities. These financial burdens raise barriers to entry, slow technology diffusion, and limit how quickly new players can enter the market.

Opportunity:

Increasing demand for energy-efficient packaging solutions

Growing demand for energy-efficient packaging presents a tangible opportunity for suppliers and integrators. As processors and AI accelerators push power density limits, packaging innovations that lower thermal resistance, improve power distribution, and enable tighter voltage regulation become commercially valuable. Moreover, energy-aware designs for mobile devices, edge nodes, and data centers reduce operating expense and support sustainability goals, attracting OEM preference. Additionally, energy-efficient packaging can unlock new architectures such as chiplet-based SiP and heterogeneous stacks, improving performance per watt and broadening addressable markets and open revenue streams in automotive and industrial applications.

Threat:

Intellectual Property Risks

Intellectual property exposure poses a meaningful threat to advanced packaging stakeholders. Complex packaging involves proprietary substrates, bonding processes, and integration recipes that represent material R&D investment; loss or leakage of this know-how through suppliers, contractors, or international transfers can erode competitive advantage. Moreover, overlapping patents and unclear standards around hybrid bonding and heterogeneous integration increase litigation risk and slow commercialization. Companies must invest in robust IP protection, defensive patenting, and secure supply-chain controls to protect.

Covid-19 Impact:

COVID-19 disrupted advanced packaging through supply-chain shocks, factory slowdowns, and component shortages that delayed capacity expansion and product launches. Initially, demand softened for some consumer segments even as datacenter and telecom needs rose, producing uneven recovery patterns. The pandemic also accelerated investment in resilient sourcing and automation, prompting lead firms to diversify manufacturing geographies and to prioritize equipment upgrades to mitigate future disruptions and shorten qualification timelines while reinforcing the value of regional manufacturing hubs.

The flip-chip packaging segment is expected to be the largest during the forecast period

The flip-chip packaging segment is expected to account for the largest market share during the forecast period. This outcome reflects flip-chip's technical advantages reduced interconnect length, improved heat conduction, and robust electrical performance that suit high-density logic and memory integration. Major OEM roadmaps for processors, GPUs, and network ASICs continue to favor flip-chip assembly, and many OSATs are expanding bumping, underfill, and substrate capacity to sustain throughput. Furthermore, flip-chip's mature supply chain and established yield practices make it commercially attractive relative to newer wafer-level approaches, enabling it to retain leadership even as fan-out and 3D options grow.

The direct/hybrid bonding (Cu-to-Cu Bonding) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the direct/hybrid bonding (Cu-to-Cu Bonding) segment is predicted to witness the highest growth rate. As device architects pursue true 3D integration and higher interconnect density, Cu-to-Cu hybrid bonding offers superior electrical performance and smaller form factors than traditional solder or micro-bump approaches. This technology is particularly critical for HBM stacks, advanced memory, and AI accelerators that require ultralow latency and high bandwidth. Additionally, equipment suppliers and foundries are prioritizing hybrid-bond tool development and qualification programs, accelerating volume readiness and addressing markets across logic and memory applications.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. This dominance stems from a deep ecosystem of foundries, OSATs, substrate makers, and materials suppliers clustered across Taiwan, South Korea, China, Malaysia, and Japan. Strong government incentives, local expertise, and existing scale reduce time-to-market for new packaging processes while proximity to large OEMs and hyperscalers secures high-volume demand. Additionally, continual investment in capacity and workforce development supports sustained production growth and attracts further capital and technology partnerships and talent pools.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as governments and industry accelerate investments in packaging, testing, and substrate capabilities to capture value from next-generation semiconductors. Capacity additions and incentive schemes in Malaysia, China, Taiwan, and South Korea enable rapid scaling of advanced processes such as hybrid bonding and fan-out wafer-level packaging. Moreover, clustering of talent, equipment suppliers, and hyperscalers shortens qualification cycles and supports stronger adoption rates for new packaging architectures. Local co-development with lead customers accelerates commercialization and fuels regional growth over the forecast period significantly.

Key players in the market

Some of the key players in Advanced Packaging Technologies Market include Amkor Technology, Inc., Taiwan Semiconductor Manufacturing Company Limited (TSMC), Advanced Semiconductor Engineering Inc. (ASE Group), Intel Corporation, JCET Group Co., Ltd., Samsung Electronics Co., Ltd., ASMPT SMT Solutions, IPC International, Inc., Prodrive Technologies B.V., Broadcom Inc., Texas Instruments Incorporated, SK hynix Inc., Applied Materials, Inc., BE Semiconductor Industries N.V. (BESI), Advanced Micro Devices, Inc. (AMD), GlobalFoundries Inc., Siliconware Precision Industries Co., Ltd. (SPIL), J-Devices Corporation, DISCO Corporation, and Ajinomoto Co., Inc.

Key Developments:

In September 2025, TSMC showcased advancements in CoWoS (Chip-on-Wafer-on-Substrate) and SoIC (System-on-Integrated-Chip) during its Open Innovation Platform event, targeting next-gen HPC and automotive systems.

In July 2025, JCET launched its new XDFOI (eXtended Die Fan-Out Interposer) technology, further enhancing heterogeneous integration for consumer electronics.

In May 2025, Amkor published that it had entered into a Strategic Partnership with Intel to expand EMIB (Embedded Multi-Die Interconnect Bridge) packaging capacity in the U.S.

Packaging Technologies Covered:

  • Flip-Chip Packaging
  • Wafer-Level Packaging (WLP)
  • 2.5D/3D Integrated Circuit (IC) Packaging
  • System-in-Package (SiP) / System-on-Module (SoM)
  • Embedded Die Packaging

Interconnect Methods Covered:

  • Solder Bumps/Microbumps
  • Copper Pillars
  • Direct/Hybrid Bonding (Cu-to-Cu Bonding)
  • Wire Bonding

Material Types Covered:

  • Substrates & Interposers
  • Die Attach Materials
  • Encapsulation & Underfill Materials
  • Thermal Interface Materials (TIMs)
  • Bonding Wires

Device Architectures Covered:

  • 2D Ics
  • 3D Ics
  • Chiplets

End Users Covered:

  • Consumer Electronics
  • Automotive
  • Data Centers & AI Accelerators
  • IT & Telecommunication
  • Industrial & IoT
  • Healthcare & Medical Devices
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Advanced Packaging Technologies Market, By Packaging Technology

  • 5.1 Introduction
  • 5.2 Flip-Chip Packaging
    • 5.2.1 Flip-Chip Ball Grid Array (FCBGA)
    • 5.2.2 Flip-Chip Chip Scale Package (FCCSP)
  • 5.3 Wafer-Level Packaging (WLP)
    • 5.3.1 Fan-Out Wafer-Level Packaging (FO-WLP / FOPLP)
    • 5.3.2 Fan-In Wafer-Level Packaging (FI-WLP)
  • 5.4 2.5D/3D Integrated Circuit (IC) Packaging
    • 5.4.1 2.5D Packaging
    • 5.4.2 3D IC Stacking
  • 5.5 System-in-Package (SiP) / System-on-Module (SoM)
  • 5.6 Embedded Die Packaging

6 Global Advanced Packaging Technologies Market, By Interconnect Method

  • 6.1 Introduction
  • 6.2 Solder Bumps/Microbumps
  • 6.3 Copper Pillars
  • 6.4 Direct/Hybrid Bonding (Cu-to-Cu Bonding)
  • 6.5 Wire Bonding

7 Global Advanced Packaging Technologies Market, By Material Type

  • 7.1 Introduction
  • 7.2 Substrates & Interposers
    • 7.2.1 Organic Substrates
    • 7.2.2 Silicon Interposers
    • 7.2.3 Glass Substrates/Interposers
  • 7.3 Die Attach Materials
    • 7.3.1 Epoxy-based
    • 7.3.2 Solder-based
  • 7.4 Encapsulation & Underfill Materials
    • 7.4.1 Epoxy Molding Compounds (EMC)
    • 7.4.2 Non-Conductive Paste/Film (NCP/NCF) Underfill
  • 7.5 Thermal Interface Materials (TIMs)
  • 7.6 Bonding Wires

8 Global Advanced Packaging Technologies Market, By Device Architecture

  • 8.1 Introduction
  • 8.2 2D Ics
  • 8.3 3D Ics
  • 8.4 Chiplets

9 Global Advanced Packaging Technologies Market, By End User

  • 9.1 Introduction
  • 9.2 Consumer Electronics
  • 9.3 Automotive
  • 9.4 Data Centers & AI Accelerators
  • 9.5 IT & Telecommunication
  • 9.6 Industrial & IoT
  • 9.7 Healthcare & Medical Devices
  • 9.8 Aerospace & Defense
  • 9.9 Other End Users

10 Global Advanced Packaging Technologies Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Amkor Technology, Inc.
  • 12.2 Taiwan Semiconductor Manufacturing Company Limited (TSMC)
  • 12.3 Advanced Semiconductor Engineering Inc. (ASE Group)
  • 12.4 Intel Corporation
  • 12.5 JCET Group Co., Ltd.
  • 12.6 Samsung Electronics Co., Ltd.
  • 12.7 ASMPT SMT Solutions
  • 12.8 IPC International, Inc.
  • 12.9 Prodrive Technologies B.V.
  • 12.10 Broadcom Inc.
  • 12.11 Texas Instruments Incorporated
  • 12.12 SK hynix Inc.
  • 12.13 Applied Materials, Inc.
  • 12.14 BE Semiconductor Industries N.V. (BESI)
  • 12.15 Advanced Micro Devices, Inc. (AMD)
  • 12.16 GlobalFoundries Inc.
  • 12.17 Siliconware Precision Industries Co., Ltd. (SPIL)
  • 12.18 J-Devices Corporation
  • 12.19 DISCO Corporation
  • 12.20 Ajinomoto Co., Inc.

List of Tables

  • Table 1 Global Advanced Packaging Technologies Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Advanced Packaging Technologies Market Outlook, By Packaging Technology (2024-2032) ($MN)
  • Table 3 Global Advanced Packaging Technologies Market Outlook, By Flip-Chip Packaging (2024-2032) ($MN)
  • Table 4 Global Advanced Packaging Technologies Market Outlook, By Flip-Chip Ball Grid Array (FCBGA) (2024-2032) ($MN)
  • Table 5 Global Advanced Packaging Technologies Market Outlook, By Flip-Chip Chip Scale Package (FCCSP) (2024-2032) ($MN)
  • Table 6 Global Advanced Packaging Technologies Market Outlook, By Wafer-Level Packaging (WLP) (2024-2032) ($MN)
  • Table 7 Global Advanced Packaging Technologies Market Outlook, By Fan-Out Wafer-Level Packaging (FO-WLP / FOPLP) (2024-2032) ($MN)
  • Table 8 Global Advanced Packaging Technologies Market Outlook, By Fan-In Wafer-Level Packaging (FI-WLP) (2024-2032) ($MN)
  • Table 9 Global Advanced Packaging Technologies Market Outlook, By 2.5D/3D Integrated Circuit (IC) Packaging (2024-2032) ($MN)
  • Table 10 Global Advanced Packaging Technologies Market Outlook, By 2.5D Packaging (2024-2032) ($MN)
  • Table 11 Global Advanced Packaging Technologies Market Outlook, By 3D IC Stacking (2024-2032) ($MN)
  • Table 12 Global Advanced Packaging Technologies Market Outlook, By System-in-Package (SiP) / System-on-Module (SoM) (2024-2032) ($MN)
  • Table 13 Global Advanced Packaging Technologies Market Outlook, By Embedded Die Packaging (2024-2032) ($MN)
  • Table 14 Global Advanced Packaging Technologies Market Outlook, By Interconnect Method (2024-2032) ($MN)
  • Table 15 Global Advanced Packaging Technologies Market Outlook, By Solder Bumps/Microbumps (2024-2032) ($MN)
  • Table 16 Global Advanced Packaging Technologies Market Outlook, By Copper Pillars (2024-2032) ($MN)
  • Table 17 Global Advanced Packaging Technologies Market Outlook, By Direct/Hybrid Bonding (Cu-to-Cu Bonding) (2024-2032) ($MN)
  • Table 18 Global Advanced Packaging Technologies Market Outlook, By Wire Bonding (2024-2032) ($MN)
  • Table 19 Global Advanced Packaging Technologies Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 20 Global Advanced Packaging Technologies Market Outlook, By Substrates & Interposers (2024-2032) ($MN)
  • Table 21 Global Advanced Packaging Technologies Market Outlook, By Organic Substrates (2024-2032) ($MN)
  • Table 22 Global Advanced Packaging Technologies Market Outlook, By Silicon Interposers (2024-2032) ($MN)
  • Table 23 Global Advanced Packaging Technologies Market Outlook, By Glass Substrates/Interposers (2024-2032) ($MN)
  • Table 24 Global Advanced Packaging Technologies Market Outlook, By Die Attach Materials (2024-2032) ($MN)
  • Table 25 Global Advanced Packaging Technologies Market Outlook, By Epoxy-based (2024-2032) ($MN)
  • Table 26 Global Advanced Packaging Technologies Market Outlook, By Solder-based (2024-2032) ($MN)
  • Table 27 Global Advanced Packaging Technologies Market Outlook, By Encapsulation & Underfill Materials (2024-2032) ($MN)
  • Table 28 Global Advanced Packaging Technologies Market Outlook, By Epoxy Molding Compounds (EMC) (2024-2032) ($MN)
  • Table 29 Global Advanced Packaging Technologies Market Outlook, By Non-Conductive Paste/Film (NCP/NCF) Underfill (2024-2032) ($MN)
  • Table 30 Global Advanced Packaging Technologies Market Outlook, By Thermal Interface Materials (TIMs) (2024-2032) ($MN)
  • Table 31 Global Advanced Packaging Technologies Market Outlook, By Bonding Wires (2024-2032) ($MN)
  • Table 32 Global Advanced Packaging Technologies Market Outlook, By Device Architecture (2024-2032) ($MN)
  • Table 33 Global Advanced Packaging Technologies Market Outlook, By 2D ICs (2024-2032) ($MN)
  • Table 34 Global Advanced Packaging Technologies Market Outlook, By 3D ICs (2024-2032) ($MN)
  • Table 35 Global Advanced Packaging Technologies Market Outlook, By Chiplets (2024-2032) ($MN)
  • Table 36 Global Advanced Packaging Technologies Market Outlook, By End User (2024-2032) ($MN)
  • Table 37 Global Advanced Packaging Technologies Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 38 Global Advanced Packaging Technologies Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 39 Global Advanced Packaging Technologies Market Outlook, By Data Centers & AI Accelerators (2024-2032) ($MN)
  • Table 40 Global Advanced Packaging Technologies Market Outlook, By IT & Telecommunication (2024-2032) ($MN)
  • Table 41 Global Advanced Packaging Technologies Market Outlook, By Industrial & IoT (2024-2032) ($MN)
  • Table 42 Global Advanced Packaging Technologies Market Outlook, By Healthcare & Medical Devices (2024-2032) ($MN)
  • Table 43 Global Advanced Packaging Technologies Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 44 Global Advanced Packaging Technologies Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.