封面
市场调查报告书
商品编码
1865400

全球云端基础设施AIOps市场:预测至2032年-按组件、部署方式、解决方案类型、应用、最终用户和区域进行分析

AIOps for Cloud Infrastructure Market Forecasts to 2032 - Global Analysis By Component, Deployment Mode, Solution Type, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Strategystics MRC 的一项研究,预计到 2025 年,全球云端基础设施 AIOps 市场规模将达到 18.3 亿美元,到 2032 年将达到 75.5 亿美元,预测期内复合年增长率为 22.4%。

面向云端基础设施的AIOps是将人工智慧(AI)和机器学习应用于云端环境中的IT运维自动化和最佳化。透过分析海量的遥测数据、日誌和效能数据,AIOps能够实现预测性维护、异常检测和智慧资源分配。这可以提高运维效率、减少停机时间并支援动态扩展。 AIOps平台与云端原生工具集成,即使在复杂的多重云端和混合环境中,也能提供即时洞察、简化事件响应并实现弹性且经济高效的基础设施管理。

云端运算的复杂性与对预测分析日益增长的需求

自动化异常检测、跨分散式系统的事件关联以及资源需求预测等功能正在推动AIOps平台的普及。对预测分析的日益重视使IT团队能够预见故障并主动优化工作负载。对即时洞察和快速事件解决的需求进一步加速了智慧自动化的进程。各组织正在利用AIOps来提高营运效率、减少人工干预并提升服务可用性。

旧有系统和资料孤岛

旧有系统通常缺乏无缝资料撷取和分析所需的互通性,这限制了自动化的范围。此外,分散在各个部门和云端环境中的营运资料孤岛会阻碍统一的可见性,并降低人工智慧驱动的洞察的有效性。而为了弥合相容性差距,还需要进行大量的重新配置并聘请专业人员,这进一步加剧了这些挑战。最终可能导致部署週期延长和投资回报延迟。

自主维修和封闭回路型自动化

闭合迴路自动化实现了监控工具和编配引擎之间的持续回馈,从而能够根据即时情况进行动态调整。这种能力在大规模环境中尤其重要,因为在这些环境中手动故障排除并不现实。供应商正致力于开发人工智慧模型,这些模型不仅能够识别根本原因,还能自动触发修復工作流程,例如重新启动服务或重新分配资源。这些进步正在为建立一个弹性且适应性强的云端生态系奠定基础。

不断发展的AI管治和云端合规法律

各地区的新法规要求演算法决策过程透明化,并限制资料处理行为。违规可能导致法律处罚和声誉损害,尤其对于在多个司法管辖区运营的跨国公司而言更是如此。此外,管治架构的频繁变更可能需要持续更新AIOps配置和审核机制。这种监管的不稳定性对供应商和用户都构成策略风险,并可能减缓创新和应用。

新冠疫情的影响:

疫情加速了各产业的数位转型,推动了云端运算和远端基础设施管理的普及。 AIOps 成为维护分散式环境运作和效能的关键基础。然而,由于 IT 人员短缺和预算重新分配,初期实施计划一度停滞。随着远距办公成为常态,对智慧监控和自动化事件回应的需求显着增长。企业优先考虑那些只需极少人工干预即可运作的工具,这进一步提升了 AIOps 的价值提案。

预计在预测期内,事件关联和根本原因分析细分市场将占据最大的市场份额。

事件关联和根本原因分析领域预计将在预测期内占据最大的市场份额,这主要得益于其能够整合大量遥测资料并识别复杂环境中的异常情况。企业正在利用这些功能来缩短平均修復时间 (MTTR) 并防止级联故障。先进的关联引擎正与可观测性平台集成,以提供上下文洞察和可操作的诊断。该领域的成熟度和跨行业适用性巩固了主导地位。

预计在预测期内,效能监控和优化细分市场将呈现最高的复合年增长率。

在预测期内,效能监控和最佳化领域预计将实现最高成长率,这主要得益于企业对云端资源进行精细化调优、最大限度降低延迟以及确保一致用户体验的需求日益增长。该领域的AIOps工具利用机器学习技术来侦测效能瓶颈并建议配置变更。容器化应用和微服务的兴起进一步推动了对精细化、即时效能洞察的需求。随着企业寻求将基础设施效率与业务成果相结合,该领域预计将快速扩张。

占比最大的地区:

预计亚太地区将在预测期内占据最大的市场份额,这主要得益于中国、印度和新加坡等国家对智慧基础设施和人工智慧驱动的IT营运的大力投资。该地区蓬勃发展的Start-Ups生态系统和政府主导的云端现代化项目正在推动对可扩展AIOps解决方案的需求。此外,超大规模资料中心和託管服务供应商的激增也为市场成长创造了沃土。亚太地区的企业越来越重视自动化,以管理复杂且大量的工作负载。

预计年复合成长率最高的地区:

亚太地区预计将在预测期内实现最高的复合年增长率,这主要得益于技术的快速发展和企业云采用率的不断提高。对人工智慧创新的重视,以及不断成长的IT基础设施投资,正在加速AIOps的普及。本地供应商正在推出经济高效、可客製化的平台,以满足区域需求,从而提高服务的可及性。此外,企业对营运弹性和网路安全意识的不断增强,也促使其采用智慧监控工具。这种充满活力的环境使亚太地区成为全球AIOps市场的重要成长引擎。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 分析方法
  • 分析材料
    • 原始研究资料
    • 二手研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球云端基础设施 AIOps 市场(按组件划分)

  • 介绍
  • 监测和可观测性
  • 事件关联和根本原因分析
  • 异常检测引擎
  • 自动化和编配模组
  • 知识库与运作手册库
  • 安全与合规模块
  • 其他部件

6. 全球云端基础设施 AIOps 市场依部署方式划分

  • 介绍
  • 本地部署
  • 私有云端
  • 公共云端
  • 混合云端
  • 边缘配置

7. 全球云端基础设施 AIOps 市场按解决方案类型划分

  • 介绍
  • 平台/套件
  • 独立解决方案
  • 託管服务
  • 专业服务
  • 附加元件和集成
  • 其他解决方案类型

8. 全球云端基础设施 AIOps 市场(按应用划分)

  • 介绍
  • IT营运自动化
  • 效能监控与优化
  • 安全事件侦测与回应
  • 成本优化与云端管治
  • 自动化 DevOps/CI-CD 管线
  • 客户体验监测
  • 其他用途

9. 全球云端基础设施 AIOps 市场(依最终用户划分)

  • 介绍
  • IT和通讯服务供应商
  • FSM/IT公司
  • 中小企业
  • 云端服务供应商/MSP
  • 政府/公共部门
  • 金融服务
  • 医学与生命科​​学
  • 零售与电子商务
  • 其他最终用户

10. 全球云端基础设施 AIOps 市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • Splunk
  • Dynatrace
  • IBM(Instana)
  • SolarWinds
  • Moogsoft
  • PagerDuty
  • Datadog
  • New Relic
  • Elastic(ELK Stack)
  • BMC Software
  • ServiceNow
  • Microsoft
  • Google
  • Amazon Web Services
  • AppDynamics
  • ScienceLogic
  • CA Technologies
  • VMware
Product Code: SMRC32083

According to Stratistics MRC, the Global AIOps for Cloud Infrastructure Market is accounted for $1.83 billion in 2025 and is expected to reach $7.55 billion by 2032 growing at a CAGR of 22.4% during the forecast period. AIOps for cloud infrastructure are the application of artificial intelligence and machine learning to automate and optimize IT operations across cloud environments. By analyzing vast volumes of telemetry, logs, and performance data, AIOps enables predictive maintenance, anomaly detection, and intelligent resource allocation. It enhances operational efficiency, reduces downtime, and supports dynamic scaling. AIOps platforms integrate with cloud-native tools to deliver real-time insights, streamline incident response, and ensure resilient, cost-effective infrastructure management in complex, multi-cloud or hybrid deployments.

Market Dynamics:

Driver:

Rising cloud complexity & demand for predictive analytics

AIOps platforms are gaining traction for their ability to automate anomaly detection, correlate events across distributed systems, and forecast resource needs. The growing emphasis on predictive analytics enables IT teams to anticipate outages and optimize workloads proactively. This shift toward intelligent automation is further accelerated by the need for real-time insights and faster incident resolution. Organizations are leveraging AIOps to streamline operations, reduce manual intervention, and enhance service availability.

Restraint:

Legacy systems and siloed data

Legacy systems often lack the interoperability required for seamless data ingestion and analysis, limiting the scope of automation. Additionally, siloed operational data across departments or cloud environments can obstruct unified visibility, reducing the effectiveness of AI-driven insights. These challenges are compounded by the need for extensive reconfiguration and skilled personnel to bridge compatibility gaps. As a result, deployment timelines may be extended, and ROI delayed.

Opportunity:

Autonomous remediation and closed-loop automation

Closed-loop automation enables continuous feedback between monitoring tools and orchestration engines, allowing for dynamic adjustments based on real-time conditions. This capability is particularly valuable in high-scale environments where manual troubleshooting is impractical. Vendors are investing in AI models that not only identify root causes but also trigger remediation workflows, such as restarting services or reallocating resources. These advancements are paving the way for resilient, adaptive cloud ecosystems.

Threat:

Evolving AI governance and cloud compliance laws

Emerging legislation across regions mandates transparency in algorithmic decision-making and restricts data processing practices. Non-compliance can lead to legal penalties and reputational damage, especially for global enterprises operating across jurisdictions. Moreover, frequent changes in governance frameworks may require continuous updates to AIOps configurations and audit mechanisms. This regulatory volatility poses a strategic risk for vendors and users alike, potentially slowing innovation and adoption.

Covid-19 Impact:

The pandemic accelerated digital transformation across industries, prompting a surge in cloud adoption and remote infrastructure management. AIOps emerged as a critical enabler for maintaining uptime and performance in distributed environments. However, initial disruptions in IT staffing and budget reallocations temporarily stalled implementation projects. As remote work became the norm, demand for intelligent monitoring and automated incident response grew significantly. Organizations prioritized tools that could operate with minimal human oversight, reinforcing the value proposition of AIOps.

The event correlation & root cause analysis segment is expected to be the largest during the forecast period

The event correlation & root cause analysis segment is expected to account for the largest market share during the forecast period propelled by, the segment's ability to synthesize vast volumes of telemetry data and pinpoint anomalies across complex environments. Enterprises rely on these capabilities to reduce mean time to resolution (MTTR) and prevent cascading failures. Advanced correlation engines are being integrated with observability platforms to provide contextual insights and actionable diagnostics. The segment's maturity and widespread applicability across industries contribute to its leading market position.

The performance monitoring & optimization segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the performance monitoring & optimization segment is predicted to witness the highest growth rate, influenced by, the increasing need to fine-tune cloud resources, minimize latency, and ensure consistent user experiences. AIOps tools in this segment leverage machine learning to detect performance bottlenecks and recommend configuration changes. The rise of containerized applications and microservices has further amplified the demand for granular, real-time performance insights. As organizations seek to align infrastructure efficiency with business outcomes, this segment is poised for rapid expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by, Countries such as China, India, and Singapore are investing heavily in smart infrastructure and AI-driven IT operations. The region's thriving startup ecosystem and government-backed cloud modernization programs are fueling demand for scalable AIOps solutions. Additionally, the proliferation of hyperscale data centers and managed service providers is creating fertile ground for market growth. Enterprises in APAC are increasingly prioritizing automation to manage complex, high-volume workloads.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by, its rapid technological advancement and expanding enterprise cloud footprint. The region's emphasis on AI innovation, coupled with rising investments in IT infrastructure, is accelerating AIOps adoption. Local vendors are introducing cost-effective, customizable platforms tailored to regional needs, boosting accessibility. Moreover, the growing awareness of operational resilience and cybersecurity is prompting organizations to deploy intelligent monitoring tools. This dynamic landscape positions APAC as a key growth engine for the global AIOps market.

Key players in the market

Some of the key players in AIOps for Cloud Infrastructure Market include Splunk, Dynatrace, IBM (Instana), SolarWinds, Moogsoft, PagerDuty, Datadog, New Relic, Elastic (ELK Stack), BMC Software, ServiceNow, Microsoft, Google, Amazon Web Services, AppDynamics, ScienceLogic, CA Technologies, and VMware.

Key Developments:

In October 2025, Splunk expands its Observability Cloud to AWS Singapore, enhancing real-time insights for APAC enterprises. This move supports hybrid cloud adoption and strengthens Cisco-Splunk's regional footprint.

In October 2025, Dynatrace and ServiceNow announce strategic collaboration, the partnership aims to scale autonomous IT operations using agentic AI and intelligent automation. It combines Dynatrace's root cause analysis with ServiceNow's AIOps workflows.

In October 2025, IBM announces Instana GenAI Observability at TechXchange 2025. Instana now offers unified observability across IBM Turbonomic and Concert, enhancing AI-driven performance. The update supports resilience and spends optimization across complex IT environments.

Components Covered:

  • Monitoring & Observability
  • Event Correlation & Root Cause Analysis
  • Anomaly Detection Engines
  • Automation & Orchestration Modules
  • Knowledge Base & Runbook Libraries
  • Security & Compliance Modules
  • Other Components

Deployment Modes Covered:

  • On-Premises
  • Private Cloud
  • Public Cloud
  • Hybrid Cloud
  • Edge Deployment

Solution Types Covered:

  • Platform / Suite
  • Standalone Solutions
  • Managed Services
  • Professional Services
  • Add-ons & Integrations
  • Other Solution Types

Applications Covered:

  • IT Operations Automation
  • Performance Monitoring & Optimization
  • Security Incident Detection & Response
  • Cost Optimization & Cloud Governance
  • DevOps/CI-CD Pipeline Automation
  • Customer Experience Monitoring
  • Other Applications

End Users Covered:

  • IT & Telecom Service Providers
  • FSM & IT Enterprises
  • SMBs & Mid-market Enterprises
  • Cloud Service Providers / MSPs
  • Government & Public Sector
  • Financial Services
  • Healthcare & Life Sciences
  • Retail & E-commerce
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AIOps for Cloud Infrastructure Market, By Component

  • 5.1 Introduction
  • 5.2 Monitoring & Observability
  • 5.3 Event Correlation & Root Cause Analysis
  • 5.4 Anomaly Detection Engines
  • 5.5 Automation & Orchestration Modules
  • 5.6 Knowledge Base & Runbook Libraries
  • 5.7 Security & Compliance Modules
  • 5.8 Other Components

6 Global AIOps for Cloud Infrastructure Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 On-Premises
  • 6.3 Private Cloud
  • 6.4 Public Cloud
  • 6.5 Hybrid Cloud
  • 6.6 Edge Deployment

7 Global AIOps for Cloud Infrastructure Market, By Solution Type

  • 7.1 Introduction
  • 7.2 Platform / Suite
  • 7.3 Standalone Solutions
  • 7.4 Managed Services
  • 7.5 Professional Services
  • 7.6 Add-ons & Integrations
  • 7.7 Other Solution Types

8 Global AIOps for Cloud Infrastructure Market, By Application

  • 8.1 Introduction
  • 8.2 IT Operations Automation
  • 8.3 Performance Monitoring & Optimization
  • 8.4 Security Incident Detection & Response
  • 8.5 Cost Optimization & Cloud Governance
  • 8.6 DevOps/CI-CD Pipeline Automation
  • 8.7 Customer Experience Monitoring
  • 8.8 Other Applications

9 Global AIOps for Cloud Infrastructure Market, By End User

  • 9.1 Introduction
  • 9.2 IT & Telecom Service Providers
  • 9.3 FSM & IT Enterprises
  • 9.4 SMBs & Mid-market Enterprises
  • 9.5 Cloud Service Providers / MSPs
  • 9.6 Government & Public Sector
  • 9.7 Financial Services
  • 9.8 Healthcare & Life Sciences
  • 9.9 Retail & E-commerce
  • 9.10 Other End Users

10 Global AIOps for Cloud Infrastructure Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Splunk
  • 12.2 Dynatrace
  • 12.3 IBM (Instana)
  • 12.4 SolarWinds
  • 12.5 Moogsoft
  • 12.6 PagerDuty
  • 12.7 Datadog
  • 12.8 New Relic
  • 12.9 Elastic (ELK Stack)
  • 12.10 BMC Software
  • 12.11 ServiceNow
  • 12.12 Microsoft
  • 12.13 Google
  • 12.14 Amazon Web Services
  • 12.15 AppDynamics
  • 12.16 ScienceLogic
  • 12.17 CA Technologies
  • 12.18 VMware

List of Tables

  • Table 1 Global AIOps for Cloud Infrastructure Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global AIOps for Cloud Infrastructure Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global AIOps for Cloud Infrastructure Market Outlook, By Monitoring & Observability (2024-2032) ($MN)
  • Table 4 Global AIOps for Cloud Infrastructure Market Outlook, By Event Correlation & Root Cause Analysis (2024-2032) ($MN)
  • Table 5 Global AIOps for Cloud Infrastructure Market Outlook, By Anomaly Detection Engines (2024-2032) ($MN)
  • Table 6 Global AIOps for Cloud Infrastructure Market Outlook, By Automation & Orchestration Modules (2024-2032) ($MN)
  • Table 7 Global AIOps for Cloud Infrastructure Market Outlook, By Knowledge Base & Runbook Libraries (2024-2032) ($MN)
  • Table 8 Global AIOps for Cloud Infrastructure Market Outlook, By Security & Compliance Modules (2024-2032) ($MN)
  • Table 9 Global AIOps for Cloud Infrastructure Market Outlook, By Other Components (2024-2032) ($MN)
  • Table 10 Global AIOps for Cloud Infrastructure Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 11 Global AIOps for Cloud Infrastructure Market Outlook, By On-Premises (2024-2032) ($MN)
  • Table 12 Global AIOps for Cloud Infrastructure Market Outlook, By Private Cloud (2024-2032) ($MN)
  • Table 13 Global AIOps for Cloud Infrastructure Market Outlook, By Public Cloud (2024-2032) ($MN)
  • Table 14 Global AIOps for Cloud Infrastructure Market Outlook, By Hybrid Cloud (2024-2032) ($MN)
  • Table 15 Global AIOps for Cloud Infrastructure Market Outlook, By Edge Deployment (2024-2032) ($MN)
  • Table 16 Global AIOps for Cloud Infrastructure Market Outlook, By Solution Type (2024-2032) ($MN)
  • Table 17 Global AIOps for Cloud Infrastructure Market Outlook, By Platform / Suite (2024-2032) ($MN)
  • Table 18 Global AIOps for Cloud Infrastructure Market Outlook, By Standalone Solutions (2024-2032) ($MN)
  • Table 19 Global AIOps for Cloud Infrastructure Market Outlook, By Managed Services (2024-2032) ($MN)
  • Table 20 Global AIOps for Cloud Infrastructure Market Outlook, By Professional Services (2024-2032) ($MN)
  • Table 21 Global AIOps for Cloud Infrastructure Market Outlook, By Add-ons & Integrations (2024-2032) ($MN)
  • Table 22 Global AIOps for Cloud Infrastructure Market Outlook, By Other Solution Types (2024-2032) ($MN)
  • Table 23 Global AIOps for Cloud Infrastructure Market Outlook, By Application (2024-2032) ($MN)
  • Table 24 Global AIOps for Cloud Infrastructure Market Outlook, By IT Operations Automation (2024-2032) ($MN)
  • Table 25 Global AIOps for Cloud Infrastructure Market Outlook, By Performance Monitoring & Optimization (2024-2032) ($MN)
  • Table 26 Global AIOps for Cloud Infrastructure Market Outlook, By Security Incident Detection & Response (2024-2032) ($MN)
  • Table 27 Global AIOps for Cloud Infrastructure Market Outlook, By Cost Optimization & Cloud Governance (2024-2032) ($MN)
  • Table 28 Global AIOps for Cloud Infrastructure Market Outlook, By DevOps/CI-CD Pipeline Automation (2024-2032) ($MN)
  • Table 29 Global AIOps for Cloud Infrastructure Market Outlook, By Customer Experience Monitoring (2024-2032) ($MN)
  • Table 30 Global AIOps for Cloud Infrastructure Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 31 Global AIOps for Cloud Infrastructure Market Outlook, By End User (2024-2032) ($MN)
  • Table 32 Global AIOps for Cloud Infrastructure Market Outlook, By IT & Telecom Service Providers (2024-2032) ($MN)
  • Table 33 Global AIOps for Cloud Infrastructure Market Outlook, By FSM & IT Enterprises (2024-2032) ($MN)
  • Table 34 Global AIOps for Cloud Infrastructure Market Outlook, By SMBs & Mid-market Enterprises (2024-2032) ($MN)
  • Table 35 Global AIOps for Cloud Infrastructure Market Outlook, By Cloud Service Providers / MSPs (2024-2032) ($MN)
  • Table 36 Global AIOps for Cloud Infrastructure Market Outlook, By Government & Public Sector (2024-2032) ($MN)
  • Table 37 Global AIOps for Cloud Infrastructure Market Outlook, By Financial Services (2024-2032) ($MN)
  • Table 38 Global AIOps for Cloud Infrastructure Market Outlook, By Healthcare & Life Sciences (2024-2032) ($MN)
  • Table 39 Global AIOps for Cloud Infrastructure Market Outlook, By Retail & E-commerce (2024-2032) ($MN)
  • Table 40 Global AIOps for Cloud Infrastructure Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.