封面
市场调查报告书
商品编码
1865482

全球废弃物发电 (WtE) 市场预测(至 2032 年):按废弃物类型、技术、应用和区域分類的分析

Waste-to-Energy Conversion Market Forecasts to 2032 - Global Analysis By Waste Type (Municipal Solid Waste, Industrial Waste, Agricultural Waste, Medical Waste, Electronic Waste and Hazardous Waste), Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,全球废弃物发电 (WtE) 市场预计在 2025 年价值 424 亿美元,预计到 2032 年将达到 663.2 亿美元,在预测期内以 6.6% 的复合年增长率增长。

废弃物发电技术利用燃烧、气化和生物处理等方法,将日常垃圾转化为可用能源。与掩埋处理不可回收废弃物不同,专门的工厂能够生产电力、热能和生质燃料,从而减少有害排放并限制环境恶化。先进的污染防治系统确保了更清洁的运行,使整个过程更加环保。透过将废弃物转化为生产性能源,这种方法符合循环经济原则,并减少了对传统化石资源的依赖。随着全球垃圾量的不断增加,许多国家正在采用废弃物发电解决方案,将其视为高效废弃物管理和可再生能源发电的双重策略,为实现永续目标做出贡献。

根据 Anylac Consulting 对 MNRE 数据的摘要,到 2023 年初,印度的 WtE 装置容量将达到约 300MW,并计划透过公私合营和市政府主导的倡议进行大幅扩张。

城市垃圾产生量不断增加

城市扩张、消费活动活性化和人口增长导致固态废弃物持续增长,给掩埋带来了巨大压力。传统的垃圾处理方法需要占用大量土地,并造成空气和土壤污染,引发永续性的挑战。废弃物系统透过将混合的不可可再生废弃物转化为电力、蒸气和燃料来解决这些问题,从而减轻掩埋的负担。许多国家的政府正在投资建造垃圾发电厂,以确保更清洁的城市环境和更好的废弃物管理。这些发电厂可谓一举两得,既能发电又能处理大量废弃物。随着全球废弃物量逐年增加,垃圾发电解决方案的市场也不断扩大。

需要大量资金投入

兴建废弃物发电厂需要大量资金投入,包括购买精密机械、排放气体过滤器、土地、厂房建设。与传统的废弃物和回收方法相比,垃圾焚化发电技术的安装和运作成本要高得多。开发中国家往往面临资金短缺的问题,难以推出大规模计划。此外,严格的监管核准和环境评估也会增加计划时间和成本,从而阻碍投资者。虽然最终收益来自能源生产和废弃物费,但投资回报期却很长。由于高昂的资本成本和漫长的投资回收期,许多政府和私人开发商对建造垃圾焚化发电厂仍然持谨慎态度。

扩大循环经济倡议

人们对循环经济原则的日益关注,为废弃物发电(WtE)领域创造了巨大的发展机会。垃圾掩埋并非将废弃物掩埋,而是从不可回收的材料中回收可用能源,进而提高资源利用效率。各国政府、市政当局和企业都在采用永续的废弃物系统,以实现其气候和环境、社会及治理(ESG)目标,这使得垃圾发电成为一个极具吸引力的选择。致力于实现碳中和的企业也将垃圾发电视为减少排放、提升营运永续性的有效途径。随着越来越多的地区从传统的垃圾处理方式转向回收利用,垃圾发电正成为废弃物管理计画的核心要素。全球范围内向回收、再利用和能源回收的转变,正在创造巨大的市场潜力。

来自回收和堆肥解决方案的竞争

回收、堆肥和零掩埋策略加剧了废弃物焚化发电厂的竞争。许多政府将资源回收列为更高的环境优先事项,因此倾向将废弃物送到垃圾分类厂和堆肥厂,而不是垃圾焚化发电系统。回收技术的进步和低成本有机物处理正在减少可用于能源产出的废弃物量。环保人士也指出,如果废弃物被焚烧而不是再利用,垃圾焚化发电可能会抑制回收。随着越来越多的地区推出严格的回收强制令,垃圾焚化发电厂可能难以取得足够的原料,进而影响其效率和获利能力。这种对回收日益重视的趋势威胁着垃圾焚化发电的未来发展。

新冠疫情的感染疾病:

新冠疫情为废弃物(WtE)产业带来了挑战和机会。疫情封锁期间,商业活动减少导致废弃物产生量下降,影响了工厂运作和原料供应。许多垃圾发电计划因供应链中断、劳动力短缺和施工限製而延期。同时,生活垃圾和医疗废弃物的增加凸显了安全科学处置废弃物的重要性。各国政府和地方政府尤其将垃圾发电视为安全处置传染性物质的有效方法。人们对卫生和环境健康的日益关注促使企业投资先进的废弃物管理技术。随着限制措施的逐步解除,暂停的计划陆续復工,有助于市场稳定和未来的成长。

预计在预测期内,都市废弃物(MSW)细分市场将占据最大的市场份额。

预计在预测期内,都市废弃物(MSW)领域将占据最大的市场份额。这主要是由于都市区持续大量产生废弃物。家庭、办公室、餐厅和公共机构产生的混合废弃物无法完全回收或安全地填埋掩埋。垃圾焚化发电(WtE)设施旨在处理这些多样化的废弃物流,并将其转化为可用的电力和热能,为市政当局提供可靠的解决方案。政策制定者正在支持以城市固体废物为基础的垃圾焚化发电计划,以减少对掩埋的依赖并改善城市清洁度。随着人口增长和城市快速发展,城市固体废物的数量持续增加,使其成为垃圾焚烧发电的关键领域,因为它为能源回收系统提供了稳定且可行的燃料来源。

预计在预测期内,气化领域将呈现最高的复合年增长率。

预计在预测期内,气化领域将实现最高成长率。这主要归功于该技术能够将固态废弃物转化为合成气,而合成气比焚烧污染更小。该系统在高温低氧环境下运作,产生的气体可用于发电、加热和生产先进燃料。其灵活性、多样化的废弃物能源化能力以及紧凑的工厂设计使其成为城市扩张的理想选择。各国政府和私人开发商正越来越多地采用气化技术,以实现更清洁的营运、更高的效率并最大限度地减少残灰。随着对低排放量废弃物处理解决方案的需求不断增长,该技术正吸引全球的资金筹措和市场关注。

占比最大的地区:

由于欧洲拥有高度发展的垃圾处理系统、严格的环境法规和积极的掩埋减量政策,预计在预测期内将占据最大的市场份额。丹麦、瑞典、德国和荷兰等国依赖垃圾发电厂来发电和提供区域供热,同时处理都市垃圾。该地区的政策着重于回收、排放和资源循环利用,垃圾发电在国家垃圾处理策略中发挥关键作用。支持性法规、气候目标和技术进步不断推动新电厂的建设。由于都市区的掩埋空间有限,且永续性意识强烈,欧洲优先发展废弃物能源回收,并维持全球市场最大的份额。

预计年复合成长率最高的地区:

由于城市扩张、人口密度增加以及垃圾量激增,预计亚太地区在预测期内将呈现最高的复合年增长率。许多地区掩埋空间不足,促使政府推广兴建垃圾发电厂作为替代处理方法。中国、印度、日本和韩国等国家正在升级其废弃物系统,并采用气化和焚化等技术生产绿能。政府奖励、基础设施建设资金以及与私人开发商的合作正在推动新设施的建设。在环境政策日益完善和对可再生能源需求不断增长的推动下,亚太地区在全球废弃物发电产业中继续保持最高的成长势头。

免费客製化服务:

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,提供主要国家的市场估算和预测以及复合年增长率(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球废弃物发电市场(以废弃物类型划分)

  • 介绍
  • 都市废弃物(MSW)
  • 工业废弃物
  • 农业废弃物
  • 医疗废弃物
  • 电子废弃物(电子废弃物)
  • 危险废弃物

6. 全球废弃物发电市场(依技术划分)

  • 介绍
  • 焚化
  • 气化
  • 热解
  • 厌氧消化
  • 发酵
  • 等离子弧治疗
  • 机械生物疗法(MBT)

7. 全球废弃物发电市场(按应用领域划分)

  • 介绍
  • 发电
  • 发烧
  • 热电联产(CHP)
  • 燃料生产

8. 全球废弃物发电市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第九章:重大发展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十章:企业概况

  • A2z Group
  • Abellon Clean Energy Ltd
  • Ecogreen Energy Pvt. Ltd
  • Il&fs Environnemental Infrastructure And Services Limited
  • Suez Group
  • Hitachi Zosen Inova
  • Hydroair Techtonics(pcd)Limited
  • Jitf Urban Infrastructure Limited
  • Mailhem Environment Pvt. Ltd
  • Ramky Enviro Engineers Ltd
  • Rollz India Waste Management
  • Veolia Environnement SA
  • Gj Eco Power Pvt. Ltd
  • Covanta Holding Corporation
  • JFE Engineering Corporation
Product Code: SMRC32150

According to Stratistics MRC, the Global Waste-to-Energy Conversion Market is accounted for $42.4 billion in 2025 and is expected to reach $66.32 billion by 2032 growing at a CAGR of 6.6% during the forecast period. Waste-to-Energy conversion turns everyday trash into useful power using technologies like combustion, gasification, and biological treatment. Rather than letting non-recyclable waste occupy landfills, specialized plants generate electricity, thermal power, or biofuels from it, reducing harmful emissions and limiting environmental degradation. Advanced pollution-control systems ensure cleaner operations, making the process more eco-friendly. Because it transforms discarded waste into productive energy, this approach supports circular economy principles and decreases reliance on conventional fossil resources. With global waste levels increasing, many countries are adopting Waste-to-Energy solutions as a dual strategy for efficient waste management and renewable energy generation, contributing to sustainable development goals.

According to Eninrac Consulting's summary of MNRE data, India's installed capacity for WtE stood at around 300 MW as of early 2023, with significant expansion planned through public-private partnerships and urban local body initiatives.

Market Dynamics:

Driver:

Rising municipal solid waste generation

The continuous increase in solid waste, driven by urban expansion, higher consumer activity, and population growth, is placing heavy pressure on landfill infrastructure. Traditional dumping methods demand large land areas and contribute to air and soil pollution, creating sustainability challenges. Waste-to-Energy systems address these issues by converting mixed, non-recyclable waste into electricity, steam, or fuel, reducing the burden on landfill sites. Many governments are investing in WtE plants to ensure cleaner urban environments and better waste management. Because these plants treat large waste volumes while generating power, they serve as a dual-benefit solution. With global waste quantities rising every year, the market for WtE solutions continues to strengthen.

Restraint:

High capital investment requirements

Establishing Waste-to-Energy plants demands heavy financial investment due to advanced machinery, emission filters, land acquisition, and facility construction. Compared to conventional waste disposal or recycling options, WtE technology is far more costly to install and operate. Developing nations often face funding shortages, making it difficult to launch large-scale projects. In addition, strict regulatory approvals and environmental assessments increase project timelines and expenses, creating hesitation among investors. Although revenues can eventually be earned from energy production and tipping fees, financial returns take many years. Because of high capital costs and slow payback periods, many governments and private developers remain cautious about adopting WtE plants.

Opportunity:

Expansion of circular economy initiatives

Growing interest in circular economy principles is creating strong opportunities for the Waste-to-Energy sector. Instead of discarding trash in landfills, WtE helps recover usable energy from non-recyclable materials, supporting resource efficiency. Governments, municipalities, and corporations are embracing sustainable waste systems to meet climate and ESG targets, making WtE an attractive choice. Businesses aiming for carbon neutrality also view WtE as a tool to reduce emissions and improve operational sustainability. As more regions shift from traditional disposal to regenerative resource practices, WtE becomes a core component in waste management plans. The global movement toward recycling, reuse, and energy recovery significantly boosts market potential.

Threat:

Competition from recycling and composting solutions

Recycling, composting, and zero-landfill strategies increasingly compete with Waste-to-Energy facilities. Since many governments view material recovery as a higher environmental priority, they often direct waste toward sorting plants and compost units rather than WtE systems. Improved recycling technologies and low-cost organic processing reduce the amount of waste available for energy generation. Activists also claim that WtE might reduce motivation for recycling efforts if waste is burned instead of repurposed. As more regions introduce strict recycling mandates, WtE plants may struggle to secure enough feedstock, affecting efficiency and profit margins. This rising preference for recycling threatens future WtE expansion.

Covid-19 Impact:

COVID-19 created both challenges and opportunities for the Waste-to-Energy sector. During lockdowns, reduced commercial activity caused lower waste generation, affecting plant operations and feedstock availability. Many WtE projects faced delays because of supply chain disruptions, limited workforce, and restrictions on construction. At the same time, rising volumes of household and medical waste highlighted the importance of safe, scientific waste treatment. Governments and municipalities adopted WtE as a secure disposal method, especially for infectious materials. Increased focus on sanitation and environmental health encouraged investment in advanced waste management technologies. As restrictions eased, suspended projects restarted, supporting market stabilization and future growth.

The municipal solid waste (MSW) segment is expected to be the largest during the forecast period

The municipal solid waste (MSW) segment is expected to account for the largest market share during the forecast period, mainly because city-based waste is generated in massive and constant quantities. Homes, offices, restaurants, and public institutions produce mixed waste that cannot be entirely recycled or dumped safely. WtE facilities are designed to treat these varied waste streams and convert them into usable power or heat, offering a reliable solution for municipalities. Policymakers support MSW-based WtE projects to reduce landfill dependence and improve urban cleanliness. With increasing population and rapid urban growth, MSW volumes continue rising, providing a steady and practical fuel source for energy recovery systems, making it the leading WtE segment.

The gasification segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the gasification segment is predicted to witness the highest growth rate, mainly because it transforms solid waste into syngas with fewer pollutants than incineration. The system operates at high heat with limited oxygen, producing gas that can be used for electricity production, heating applications, or advanced fuels. Its flexibility, ability to treat different waste types, and compact plant layouts make it a practical option for expanding cities. Governments and private developers are increasingly selecting gasification to achieve cleaner operations, higher efficiency, and minimal residual ash. With rising demand for low-emission waste solutions, this technology is receiving increased funding and market attention worldwide.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share because it has well-developed treatment systems, strict environmental laws, and aggressive landfill reduction rules. Nations like Denmark, Sweden, Germany, and the Netherlands rely on WtE facilities to manage municipal waste while producing power and district heating. The region's policies focus on recycling, emission reduction, and circular resource use, making WtE an important part of national waste strategies. Supportive regulations, climate goals, and technological advancements continue driving new plant construction. Since urban areas have limited space for landfills and high sustainability awareness, Europe prioritizes energy recovery from waste, allowing it to maintain the highest share in the global market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR because of expanding cities, increasing population density, and surging waste volumes. Many areas are running out of landfill space, encouraging authorities to adopt WtE plants as an alternative disposal method. Countries including China, India, Japan, and South Korea are upgrading waste systems and using technologies like gasification and incineration to generate clean power. Government incentives, infrastructure funding, and partnerships with private developers are speeding construction of new facilities. With stronger environmental policies and rising demand for renewable energy, Asia-Pacific continues to show the highest growth momentum in the global WtE sector.

Key players in the market

Some of the key players in Waste-to-Energy Conversion Market include A2z Group, Abellon Clean Energy Ltd, Ecogreen Energy Pvt. Ltd, Il&fs Environnemental Infrastructure And Services Limited, Suez Group, Hitachi Zosen Inova, Hydroair Techtonics (pcd) Limited, Jitf Urban Infrastructure Limited, Mailhem Environment Pvt. Ltd, Ramky Enviro Engineers Ltd, Rollz India Waste Management, Veolia Environnement SA, Gj Eco Power Pvt. Ltd, Covanta Holding Corporation and JFE Engineering Corporation.

Key Developments:

In June 2025, Veolia, the world leader in hazardous waste treatment with 5b$ in this activity, patented technologies and a worldwide presence, today announced actions to expand its hazardous waste treatment and disposal business in North America through investment, acquisitions and capacity expansion. The company announced c.$350 million (€300m) in global investments worldwide, including three new U.S. acquisitions in Massachusetts and California and reaffirmed plans to expand existing facilities.

In April 2025, SUEZ and the Gabonese Energy and Water Company (SEEG) have signed a five-year contract to optimize drinking water production and distribution services in Libreville and major cities in Gabon. Under this new contract, SUEZ will work alongside SEEG across all its business lines, including production, transport, distribution, and customer management.

In October 2024, A2Z Cust2mate Solutions Corp. announced it has signed a framework agreement with Trixo ("Trixo"), a leading retail technology integrator providing technology and IT and other services in Mexico and Central America, for in-field installation, deployment, in-store and laboratory support, maintenance, help desk services and warranty fulfillment related to the company's Cust2Mate smart cart solutions to be rolled out in Mexico and Central America.

Waste Types Covered:

  • Municipal Solid Waste (MSW)
  • Industrial Waste
  • Agricultural Waste
  • Medical Waste
  • Electronic Waste (E-Waste)
  • Hazardous Waste

Technologies Covered:

  • Incineration
  • Gasification
  • Pyrolysis
  • Anaerobic Digestion
  • Fermentation
  • Plasma Arc Treatment
  • Mechanical-Biological Treatment (MBT)

Applications Covered:

  • Electricity Generation
  • Heat Generation
  • Combined Heat and Power (CHP)
  • Fuel Production

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Waste-to-Energy Conversion Market, By Waste Type

  • 5.1 Introduction
  • 5.2 Municipal Solid Waste (MSW)
  • 5.3 Industrial Waste
  • 5.4 Agricultural Waste
  • 5.5 Medical Waste
  • 5.6 Electronic Waste (E-Waste)
  • 5.7 Hazardous Waste

6 Global Waste-to-Energy Conversion Market, By Technology

  • 6.1 Introduction
  • 6.2 Incineration
  • 6.3 Gasification
  • 6.4 Pyrolysis
  • 6.5 Anaerobic Digestion
  • 6.6 Fermentation
  • 6.7 Plasma Arc Treatment
  • 6.8 Mechanical-Biological Treatment (MBT)

7 Global Waste-to-Energy Conversion Market, By Application

  • 7.1 Introduction
  • 7.2 Electricity Generation
  • 7.3 Heat Generation
  • 7.4 Combined Heat and Power (CHP)
  • 7.5 Fuel Production

8 Global Waste-to-Energy Conversion Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 A2z Group
  • 10.2 Abellon Clean Energy Ltd
  • 10.3 Ecogreen Energy Pvt. Ltd
  • 10.4 Il&fs Environnemental Infrastructure And Services Limited
  • 10.5 Suez Group
  • 10.6 Hitachi Zosen Inova
  • 10.7 Hydroair Techtonics (pcd) Limited
  • 10.8 Jitf Urban Infrastructure Limited
  • 10.9 Mailhem Environment Pvt. Ltd
  • 10.10 Ramky Enviro Engineers Ltd
  • 10.11 Rollz India Waste Management
  • 10.12 Veolia Environnement SA
  • 10.13 Gj Eco Power Pvt. Ltd
  • 10.14 Covanta Holding Corporation
  • 10.15 JFE Engineering Corporation

List of Tables

  • Table 1 Global Waste-to-Energy Conversion Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Waste-to-Energy Conversion Market Outlook, By Waste Type (2024-2032) ($MN)
  • Table 3 Global Waste-to-Energy Conversion Market Outlook, By Municipal Solid Waste (MSW) (2024-2032) ($MN)
  • Table 4 Global Waste-to-Energy Conversion Market Outlook, By Industrial Waste (2024-2032) ($MN)
  • Table 5 Global Waste-to-Energy Conversion Market Outlook, By Agricultural Waste (2024-2032) ($MN)
  • Table 6 Global Waste-to-Energy Conversion Market Outlook, By Medical Waste (2024-2032) ($MN)
  • Table 7 Global Waste-to-Energy Conversion Market Outlook, By Electronic Waste (E-Waste) (2024-2032) ($MN)
  • Table 8 Global Waste-to-Energy Conversion Market Outlook, By Hazardous Waste (2024-2032) ($MN)
  • Table 9 Global Waste-to-Energy Conversion Market Outlook, By Technology (2024-2032) ($MN)
  • Table 10 Global Waste-to-Energy Conversion Market Outlook, By Incineration (2024-2032) ($MN)
  • Table 11 Global Waste-to-Energy Conversion Market Outlook, By Gasification (2024-2032) ($MN)
  • Table 12 Global Waste-to-Energy Conversion Market Outlook, By Pyrolysis (2024-2032) ($MN)
  • Table 13 Global Waste-to-Energy Conversion Market Outlook, By Anaerobic Digestion (2024-2032) ($MN)
  • Table 14 Global Waste-to-Energy Conversion Market Outlook, By Fermentation (2024-2032) ($MN)
  • Table 15 Global Waste-to-Energy Conversion Market Outlook, By Plasma Arc Treatment (2024-2032) ($MN)
  • Table 16 Global Waste-to-Energy Conversion Market Outlook, By Mechanical-Biological Treatment (MBT) (2024-2032) ($MN)
  • Table 17 Global Waste-to-Energy Conversion Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global Waste-to-Energy Conversion Market Outlook, By Electricity Generation (2024-2032) ($MN)
  • Table 19 Global Waste-to-Energy Conversion Market Outlook, By Heat Generation (2024-2032) ($MN)
  • Table 20 Global Waste-to-Energy Conversion Market Outlook, By Combined Heat and Power (CHP) (2024-2032) ($MN)
  • Table 21 Global Waste-to-Energy Conversion Market Outlook, By Fuel Production (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.