封面
市场调查报告书
商品编码
1876705

2032年离岸风力发电市场预测:按组件、安装类型、涡轮机容量、位置、应用和区域分類的全球分析

Offshore Wind Power Market Forecasts to 2032 - Global Analysis By Component, Installation Type, Turbine Capacity, Location/Water Depth, Application, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球离岸风力发电市场规模将达到 551 亿美元,到 2032 年将达到 1,354 亿美元。

预计在预测期内,离岸风电市场将以13.7%的复合年增长率高速成长。离岸风力发电是指利用固定式和浮体式风力涡轮机技术在海上开发风电场,以利用更强劲、更稳定的风能。更大的涡轮机和改进的基础结构提高了运转率,使离岸风力发电成为大规模可再生能源发电领域的重要力量。计划开发需要海洋许可、併网许可和大量资本投资,并且通常需要购电协议或政府竞标系统的支援。

强而有力的政府政策与可再生能源目标

强而有力的政府政策和可再生能源目标透过提供明确的市场讯号和财政支持,加速了离岸风力发电的部署。国家和地区竞标、补贴以及长期购电协议降低了开发商的收入不确定性,并吸引了机构投资者。此外,海洋空间规划和协调一致的输电网升级为大型计划位置提供了便利,而北海和亚洲的多边合作则促进了跨境基础设施建设。这些措施降低了计划风险,促进了供应链的扩展,并刺激了成本的降低。

高额资本支出及计划开发成本

高昂的资本支出和计划开发成本正在限制离岸风力发电的发展,因为它们提高了进入门槛并延长了投资回收期。涡轮机、基础结构、专用安装船、港口改造和电网连接的成本推高了初始预算,而近期供应链的压力进一步增加了材料和物流成本。此外,不断上涨的资金筹措成本和复杂的审批程序增加了计划风险,并吓退了一些投资者。这些成本压力正在减缓计划推进速度,并可能导致策略性终止或缩减专案规模。

深海域浮体式海上风电技术的发展

浮体式海上风电技术的发展蕴藏着巨大的机会,使得在传统固定式风力涡轮机无法触及的深海域中计划成为可能。浮体式平台能够利用更远海域更强劲、更稳定的风力资源,进而提高容量係数和发电量。欧洲和亚洲的先导计画已证实了该技术的可行性,并透过规模化和设计改进降低了成本。此外,将海上製氢与其他再生能源来源结合,预计将为开发商开闢新的收入来源,并加速这些技术走向全球市场的进程。

与其他再生能源来源的竞争

来自陆上风电和太阳能光电等其他可再生能源的竞争,因其更低的资本成本和更快的部署速度,对离岸风电构成了挑战。这些优势吸引了优先考虑近期产能扩张的政策制定者和投资者的注意。太阳能和陆上风电平准化度电成本(LCOE)的下降,以及储能技术的快速普及,可能会降低对资本密集离岸风计划的迫切需求。此外,混合系统和灵活发电方式也会影响电力系统的经济性,迫使离岸风电开发商赢得竞争性合同,并证明其係统的价值。

新冠疫情的感染疾病:

新冠疫情对离岸风力发电造成了衝击,供应链延误、劳动力短缺和港口临时关闭导致专案延期和成本增加。封锁和旅行限制阻碍了海上船舶作业,而卫生通讯协定则增加了物流复杂性和保险方面的考量。然而,政府采取的有针对性的经济措施、灵活的计划管理以及对关键供应链的优先保障,有效限制了疫情造成的长期损害。数位化协作和加速的紧急时应对计画帮助产业復苏,维持了投资者信心和策略部署计画的顺利进行。

预计在预测期内,风力发电机细分市场将占据最大的市场份额。

预计在预测期内,风力发电机领域将占据最大的市场份额,其提供的核心发电设备决定了计划的容量、成本和性能。涡轮机订单占资本支出的很大一部分,而诸如更大转子直径和更高容量机舱等技术进步提高了能源产量并降低了平准化能源成本。原始设备製造商 (OEM)、涡轮机资金筹措模式以及较长的前置作业时间使得涡轮机成为计划经济效益的核心。这导致对下一代涡轮机和服务合约的需求不断增长,有力地支持了全球长期脱碳目标的实现。

预计在预测期内,浮体式结构物领域将实现最高的复合年增长率。

预计在预测期内,浮体式结构领域将实现最高成长率,这主要得益于亚太地区、日本和欧洲西海岸等深海域计划储备的不断扩大。该技术凭藉其部署大规模计划、在更强风力条件下作业以及提供选址灵活性的潜力,正吸引众多开发商。工业化进程正在降低单位成本,并推动供应链的成熟,从而提高融资方的风险接受度,促进技术的更快普及和更广泛地进入全球市场。

占比最大的地区:

在预测期内,欧洲预计将保持最大的市场份额,这得益于其成熟的供应链、广阔的浅海大陆棚以及欧盟和英国强有力的政策承诺。长期以来对港口、安装船舶和本地製造业的投资,有助于计划快速推进和成本降低。围绕北海基础设施和竞标项目的区域合作,确保了管道建设的稳定性。此外,雄心勃勃的可再生能源目标和既定的市场规则,也为专案的持续部署和相关技术的出口提供了支持。

复合年增长率最高的地区:

预计亚太地区在预测期内将实现最高的复合年增长率,沿海国家正加速扩大可再生能源装置容量,以满足其气候和能源安全目标。快速增长的电力需求、中国、台湾、韩国和日本沿海丰富的风能资源以及不断提升的国内製造业能力将推动成长。此外,政策奖励、竞标机制和在地采购要求将促进供应链发展。加之国内外企业投资不断增加,该地区正积极推动国际伙伴关係。

免费客製化服务:

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,对主要国家的市场规模和复合年增长率进行估算和预测(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球离岸风力发电市场(依组件划分)

  • 介绍
  • 风力发电机
    • 叶轮
    • 短舱
  • 电力基础设施
    • 阵列电缆和出口电缆
    • 海上变电站(交流/直流)
    • 陆上变电站
  • 其他部件

6. 全球离岸风力发电市场依安装类型划分

  • 介绍
  • 固定结构
    • 单桩
    • 夹克
    • 基于重力的结构(GBS)
    • 三脚架/三脚架
  • 浮体结构
    • 半潜式
    • 浮标
    • 张力脚平臺(TLP)
    • 驳船

7. 全球离岸风力发电市场(依涡轮机容量划分)

  • 介绍
  • 最高可达5兆瓦
  • 5MW~10MW
  • 超过10兆瓦

8. 全球离岸风力发电市场(依地区划分)

  • 介绍
  • 浅水区(水深小于30公尺)
  • 过渡水域(水深30公尺至60公尺)
  • 深海(水深60公尺或以上 - 主要用于浮动式风力发电)

第九章 全球离岸风力发电市场依应用领域划分

  • 介绍
  • 大规模发电
  • 商业和工业 (C&I)计划
  • 绿色氢气生产

第十章 全球离岸风力发电市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十二章:企业概况

  • Orsted A/S
  • Vestas Wind Systems A/S
  • Siemens Gamesa Renewable Energy SA
  • GE Renewable Energy
  • Equinor ASA
  • RWE AG
  • Iberdrola SA
  • SSE plc
  • Vattenfall AB
  • EnBW Energie Baden-Wurttemberg AG
  • China Three Gorges Corporation
  • Mingyang Smart Energy Group Co., Ltd.
  • Goldwind Science & Technology Co., Ltd.
  • BP plc
  • Shell plc
  • Northland Power Inc.
  • Jan De Nul Group
  • Royal Van Oord NV
Product Code: SMRC32452

According to Stratistics MRC, the Global Offshore Wind Power Market is accounted for $55.1 billion in 2025 and is expected to reach $135.4 billion by 2032, growing at a CAGR of 13.7% during the forecast period. Offshore wind power develops wind farms located at sea using fixed-bottom and floating turbine technologies to capture stronger, steadier winds. Larger turbine sizes and improved foundations drive higher capacity factors, making offshore attractive for utility-scale renewable generation. Project development requires marine permitting, grid connection, and substantial capital investment, often supported by power purchase agreements and government auctions.

Market Dynamics:

Driver:

Strong government policies and renewable energy targets

Strong government policies and renewable energy targets have accelerated offshore wind deployment by providing clear market signals and financial backing. National and regional auctions, subsidies, and long-term power purchase agreements reduce revenue uncertainty for developers and attract institutional investment. Moreover, maritime spatial planning and coordinated grid upgrades enable large-scale project siting, while multi-country cooperation in the North Sea and Asia unlocks cross-border infrastructure. These measures lower project risk, incentivize supply chain expansion, and stimulate cost reductions.

Restraint:

High capital expenditure and project development costs

High capital expenditure and project development costs constrain offshore wind growth by raising barriers to entry and prolonging payback periods. Costs for turbines, foundations, specialized installation vessels, port upgrades, and grid connection inflate upfront budgets, and recent supply chain pressures have driven material and logistic expenses higher. Furthermore, elevated financing costs and complex permitting processes amplify project risk, deterring some investors. Such cost pressures slow project pipelines and can prompt strategic pauses or scope reductions.

Opportunity:

Development of floating offshore wind technology for deep-water sites

Development of floating offshore wind technology presents significant opportunity by enabling projects in deep-water locations previously inaccessible to fixed-bottom turbines. Floating platforms allow access to stronger and more consistent wind resources farther offshore, improving capacity factors and energy yields. Pilot projects in Europe and Asia have validated technical feasibility and are driving cost reductions through scale and design improvements. Also, combining offshore hydrogen production with other renewable energy sources can open up new ways for developers to make money and speed up the process of bringing these technologies to market around the world.

Threat:

Competition from other renewable energy sources

Competition from other renewables, notably onshore wind and solar PV, challenges offshore wind by offering lower capital costs and faster deployment timelines, which appeal to policymakers and investors prioritizing near-term capacity. Declining levelized costs for solar and onshore wind, combined with rapid deployment of energy storage, can reduce the urgency for more capital-intensive offshore projects. Additionally, hybrid systems and flexible generation affect the economics of the power grid, making it necessary for offshore developers to obtain competitive contracts and show the value of their systems.

Covid-19 Impact:

COVID-19 disrupted offshore wind through supply-chain delays, workforce restrictions, and temporary port closures that postponed construction and increased costs. Lockdowns and travel limits hampered offshore vessel operations, while health protocols raised logistical complexity and insurance considerations. Nonetheless, targeted government stimulus, resilient project management, and prioritization of critical supply chains limited long-term damage. By accelerating digital collaboration and contingency planning, the industry recovered, preserving investor confidence and maintaining strategic deployment pipelines.

The wind turbines segment is expected to be the largest during the forecast period

The wind turbines segment is expected to account for the largest market share during the forecast period by supplying the core generation assets that determine project capacity, cost, and performance. Turbine orders drive major portions of capital expenditure, while technological advances in larger rotor diameters and higher-capacity nacelles improve energy yield and lower levelized costs. OEMs, turbine financing models, and long lead times make turbines central to project economics. Consequently, demand for next-generation turbines and a service contract grow and underpin long-term decarbonization objectives worldwide securely.

The floating structure segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the floating structure segment is predicted to witness the highest growth rate owing to expanding project pipelines in areas with deep waters, such as parts of Asia Pacific, Japan, and the western coasts of Europe. The technology allows larger project footprints, stronger wind regimes, and siting flexibility that attract developers. As industrialization reduces unit costs and supply chains mature, financiers become more comfortable, prompting faster deployment and broadening global market access.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share due to its mature supply chain, extensive shallow continental shelves, and strong policy commitments across the EU and UK. Longstanding investments in ports, installation vessels, and local manufacturing support rapid project execution and cost reductions. Regional cooperation around North Sea infrastructure and auction programs provides steady pipeline visibility. In addition, ambitious renewables targets and established market rules support sustained deployment and export expertise.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR as coastal nations accelerate renewable capacity additions to meet climate goals and energy security objectives. Rapidly expanding electricity demand, favorable wind resources off China, Taiwan, South Korea, and Japan, and rising domestic manufacturing capacity drive growth. Moreover, policy incentives, auctions, and local content requirements stimulate supply chain development. Combined with increased investment from domestic and international players, the region is fostering international partnerships.

Key players in the market

Some of the key players in Offshore Wind Power Market include Orsted A/S, Vestas Wind Systems A/S, Siemens Gamesa Renewable Energy S.A., GE Renewable Energy, Equinor ASA, RWE AG, Iberdrola S.A., SSE plc, Vattenfall AB, EnBW Energie Baden-Wurttemberg AG, China Three Gorges Corporation, Mingyang Smart Energy Group Co., Ltd., Goldwind Science & Technology Co., Ltd., BP plc, Shell plc, Northland Power Inc., Jan De Nul Group, and Royal Van Oord N.V.

Key Developments:

In November 2025, Vestas is proud to have received orders for 347 MW in the USA and Canada for undisclosed projects.

In November 2025, Orsted announced it will commercialise its low-noise "Osonic" monopile installation method, following deployment at its Gode Wind 3 offshore wind farm.

In July 2025, Siemens Gamesa was selected by Ocean Winds as turbine supplier for its BC-Wind offshore-wind project in Poland (26 turbines) under agreement.

In June 2025, EnBW announced it will build the He Dreiht offshore-wind farm (900 MW) using Vestas 15 MW turbines, Germany's first subsidy-free offshore wind farm.

Components Covered:

  • Wind Turbines
  • Electrical Infrastructure
  • Other Components

Installation Types Covered:

  • Fixed Structure
  • Floating Structure

Turbine Capacities Covered:

  • Up to 5 MW
  • 5 MW to 10 MW
  • Above 10 MW

Locations Covered:

  • Shallow Water (< 30m Depth)
  • Transitional Water (30m - 60m Depth)
  • Deep Water (> 60m Depth - Primarily Floating Wind)

Applications Covered:

  • Utility-Scale Power Generation
  • Commercial & Industrial (C&I) Projects
  • Green Hydrogen Production

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Offshore Wind Power Market, By Component

  • 5.1 Introduction
  • 5.2 Wind Turbines
    • 5.2.1 Rotor Blades
    • 5.2.2 Nacelle
    • 5.2.3 Tower
  • 5.3 Electrical Infrastructure
    • 5.3.1 Array Cables and Export Cables
    • 5.3.2 Offshore Substation (AC/DC)
    • 5.3.3 Onshore Substation
  • 5.4 Other Components

6 Global Offshore Wind Power Market, By Installation Type

  • 6.1 Introduction
  • 6.2 Fixed Structure
    • 6.2.1 Monopile
    • 6.2.2 Jacket
    • 6.2.3 Gravity-Based Structures (GBS)
    • 6.2.4 Tripod/Tripile
  • 6.3 Floating Structure
    • 6.3.1 Semi-Submersible
    • 6.3.2 Spar-Buoy
    • 6.3.3 Tension-Leg Platform (TLP)
    • 6.3.4 Barge

7 Global Offshore Wind Power Market, By Turbine Capacity

  • 7.1 Introduction
  • 7.2 Up to 5 MW
  • 7.3 5 MW to 10 MW
  • 7.4 Above 10 MW

8 Global Offshore Wind Power Market, By Location (Water Depth)

  • 8.1 Introduction
  • 8.2 Shallow Water (< 30m Depth)
  • 8.3 Transitional Water (30m - 60m Depth)
  • 8.4 Deep Water (> 60m Depth - Primarily Floating Wind)

9 Global Offshore Wind Power Market, By Application

  • 9.1 Introduction
  • 9.2 Utility-Scale Power Generation
  • 9.3 Commercial & Industrial (C&I) Projects
  • 9.4 Green Hydrogen Production

10 Global Offshore Wind Power Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Orsted A/S
  • 12.2 Vestas Wind Systems A/S
  • 12.3 Siemens Gamesa Renewable Energy S.A.
  • 12.4 GE Renewable Energy
  • 12.5 Equinor ASA
  • 12.6 RWE AG
  • 12.7 Iberdrola S.A.
  • 12.8 SSE plc
  • 12.9 Vattenfall AB
  • 12.10 EnBW Energie Baden-Wurttemberg AG
  • 12.11 China Three Gorges Corporation
  • 12.12 Mingyang Smart Energy Group Co., Ltd.
  • 12.13 Goldwind Science & Technology Co., Ltd.
  • 12.14 BP plc
  • 12.15 Shell plc
  • 12.16 Northland Power Inc.
  • 12.17 Jan De Nul Group
  • 12.18 Royal Van Oord N.V.

List of Tables

  • 1 Global Offshore Wind Power Market Outlook, By Region (2024-2032) ($MN)
  • 2 Global Offshore Wind Power Market Outlook, By Component (2024-2032) ($MN)
  • 3 Global Offshore Wind Power Market Outlook, By Wind Turbines (2024-2032) ($MN)
  • 4 Global Offshore Wind Power Market Outlook, By Rotor Blades (2024-2032) ($MN)
  • 5 Global Offshore Wind Power Market Outlook, By Nacelle (2024-2032) ($MN)
  • 6 Global Offshore Wind Power Market Outlook, By Tower (2024-2032) ($MN)
  • 7 Global Offshore Wind Power Market Outlook, By Electrical Infrastructure (2024-2032) ($MN)
  • 8 Global Offshore Wind Power Market Outlook, By Array Cables and Export Cables (2024-2032) ($MN)
  • 9 Global Offshore Wind Power Market Outlook, By Offshore Substation (AC/DC) (2024-2032) ($MN)
  • 10 Global Offshore Wind Power Market Outlook, By Onshore Substation (2024-2032) ($MN)
  • 11 Global Offshore Wind Power Market Outlook, By Other Components (2024-2032) ($MN)
  • 12 Global Offshore Wind Power Market Outlook, By Installation Type (2024-2032) ($MN)
  • 13 Global Offshore Wind Power Market Outlook, By Fixed Structure (2024-2032) ($MN)
  • 14 Global Offshore Wind Power Market Outlook, By Monopile (2024-2032) ($MN)
  • 15 Global Offshore Wind Power Market Outlook, By Jacket (2024-2032) ($MN)
  • 16 Global Offshore Wind Power Market Outlook, By Gravity-Based Structures (GBS) (2024-2032) ($MN)
  • 17 Global Offshore Wind Power Market Outlook, By Tripod/Tripile (2024-2032) ($MN)
  • 18 Global Offshore Wind Power Market Outlook, By Floating Structure (2024-2032) ($MN)
  • 19 Global Offshore Wind Power Market Outlook, By Semi-Submersible (2024-2032) ($MN)
  • 20 Global Offshore Wind Power Market Outlook, By Spar-Buoy (2024-2032) ($MN)
  • 21 Global Offshore Wind Power Market Outlook, By Tension-Leg Platform (TLP) (2024-2032) ($MN)
  • 22 Global Offshore Wind Power Market Outlook, By Barge (2024-2032) ($MN)
  • 23 Global Offshore Wind Power Market Outlook, By Turbine Capacity (2024-2032) ($MN)
  • 24 Global Offshore Wind Power Market Outlook, By Up to 5 MW (2024-2032) ($MN)
  • 25 Global Offshore Wind Power Market Outlook, By 5 MW to 10 MW (2024-2032) ($MN)
  • 26 Global Offshore Wind Power Market Outlook, By Above 10 MW (2024-2032) ($MN)
  • 27 Global Offshore Wind Power Market Outlook, By Location (Water Depth) (2024-2032) ($MN)
  • 28 Global Offshore Wind Power Market Outlook, By Shallow Water (<30m Depth) (2024-2032) ($MN)
  • 29 Global Offshore Wind Power Market Outlook, By Transitional Water (30m-60m Depth) (2024-2032) ($MN)
  • 30 Global Offshore Wind Power Market Outlook, By Deep Water (>60m Depth - Primarily Floating Wind) (2024-2032) ($MN)
  • 31 Global Offshore Wind Power Market Outlook, By Application (2024-2032) ($MN)
  • 32 Global Offshore Wind Power Market Outlook, By Utility-Scale Power Generation (2024-2032) ($MN)
  • 33 Global Offshore Wind Power Market Outlook, By Commercial & Industrial (C&I) Projects (2024-2032) ($MN)
  • 34 Global Offshore Wind Power Market Outlook, By Green Hydrogen Production (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.