封面
市场调查报告书
商品编码
1904552

磁致伸缩材料市场预测至2032年:按材料类型、产品形式、应用、最终用户和地区分類的全球分析

Magnetostrictive Material Market Forecasts to 2032 - Global Analysis By Material Type, Product Form, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的研究,全球磁致伸缩材料市场预计到 2025 年将达到 20 亿美元,到 2032 年将达到 38 亿美元。

预计市场在预测期内将以9.4%的复合年增长率成长。磁致伸缩材料是指在磁场作用下改变形状,并在机械应力作用下表现出磁响应的材料。这些材料广泛应用于感测器、致动器、声纳系统和精密控制设备。成长要素包括对高精度感测、工业自动化、国防和海洋应用以及智慧製造的需求,以及尖端材料在能源和航太系统中的日益普及。

对感测器和致动器高精度和高可靠性的需求

航太、汽车和医疗领域对高精度感测和运动控制系统日益增长的需求是推动该市场发展的主要动力。磁致伸缩材料,例如Terfenol D,具有卓越的灵敏度和快速反应时间,这对于机器人精密定位和先进的亚微米加工至关重要。此外,与传统机械系统相比,其固体特性确保了更高的可靠性和更长的使用寿命。这种固有的耐久性使这些材料成为关键任务应用的理想选择,因为在这些应用中,任何故障都是不可接受的。此外,向工业4.0的转型也进一步加速了这些高性能材料的整合应用。

稀土元素材料高成本

巨磁致伸缩材料广泛应用的主要障碍在于其关键稀土元素(如铽和镝)的高成本。这些元素的开采和提炼成本高昂,直接推高了高应变合金的最终价格。因此,许多对成本敏感的行业仍然选择性能受限的压电和电磁技术。此外,生产这些特殊材料所需的高级加工流程也进一步加重了製造週期的经济负担。而且,由于初始投资额高,中小企业往往面临许多障碍,限制了其在全球新兴产业领域的市场渗透。

工业和汽车领域振动能源回收

磁致伸缩材料能够将机械应力转化为电能,这为振动能源采集领域带来了广阔的应用前景。随着各行业向用于结构健康监测的自供电无线感测器节点发展,这些材料为电池提供了可靠的替代方案。在汽车领域,采集引擎振动和悬吊运动产生的动能可以显着提高车辆的整体效率。此外,与压电材料相比,磁致伸缩能量撷取器不存在退极化问题,因此在恶劣的高振动环境中具有显着优势。

稀土元素供应链风险与价格波动

主要生产国的贸易摩擦和出口限制往往导致价格波动和原材料短缺。这种波动使得製造商难以维持稳定的定价和长期的生产计画。此外,地缘政治不稳定可能导致原材料供应一夜之间中断,迫使企业寻求昂贵的替代方案或承担计划延期的风险。日益严格的稀土元素开采环境法规进一步限制了这些关键元素的全球供应,并可能推高营运成本。

新冠疫情的影响

新冠疫情对磁致伸缩材料市场造成了严重的短期衝击,主要原因是工业生产和全球物流的突然停滞。工厂关闭导致汽车和航太领域的需求急剧下降。此外,采矿业面临劳动力短缺和营运限制,导致稀土元素原料供应延迟。然而,随着各行业转向自动化和远端监控解决方案,市场逐渐復苏。这项转变凸显了后疫情时代对具有高可靠性和高精度的感测技术的长期需求。

预计在预测期内,棒材细分市场将占据最大的市场份额。

预计在预测期内,棒材和桿材将占据最大的市场份额。这是因为这些形状的棒材和桿材能够为纵向应力应用提供最有效的几何构型。此外,这些标准化的形状可以轻鬆整合到现有的工业机械中,从而简化工程师的设计流程。同时,材料加工技术的进步也正在提高大型棒材的均匀性和性能。

预计在预测期内,製造业和自动化领域将实现最高的复合年增长率。

预计在预测期内,製造和自动化领域将实现最高成长率,因为製造商正寻求提高生产速度和精度。此外,在回授控制系统中加入磁致伸缩元件可以实现即时调整,从而减少废弃物和停机时间。电子组装产业的扩张也将进一步推动该领域的成长。

比最大的地区

预计北美地区将在预测期内占据最大的市场份额。这一主导地位得益于该地区众多大型航太和国防承包商,他们将此类材料应用于声纳系统和减振领域。此外,该地区强大的研发基础设施正在推动材料科学和智慧系统领域的持续创新。同时,美国先进医疗设备和精密手术器械的高普及率也显着提升了市场收入。此外,政府大力推动清洁能源和高科技製造业发展,也持续刺激国内对磁致伸缩解决方案的需求。

复合年均成长率最高的地区

预计亚太地区在预测期内将实现最高的复合年增长率。这项加速成长主要得益于中国、印度和日本汽车及消费性电子产业的大规模发展。此外,该地区作为全球稀土元素生产中心,为本地製造商在材料供应和成本方面提供了竞争优势。同时,工业自动化投资的增加和5G基础设施的快速部署,也为磁致伸缩感测器应用领域创造了新的机会。此外,政府推出的「中国製造2025」等扶持倡议,也推​​动了技术进步。

免费客製化服务

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 最多三家新增市场参与企业进行全面分析
    • 主要企业SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,对主要国家进行市场估算和预测,并计算复合年增长率(註:可行性需确认)。
  • 竞争标竿分析
    • 从产品系列、地域覆盖范围和策略联盟等方面对主要参与企业进行基准分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球磁致伸缩材料市场(依材料类型划分)

  • 稀土元素磁致伸缩材料
  • 铁基合金
  • 铁氧体磁致伸缩材料
  • 非晶态和奈米晶合金
  • 磁致伸缩复合材料与薄膜

第六章 全球磁致伸缩材料市场(依产品类型划分)

  • 板材和片材
  • 粉末和微球
  • 管材和特殊形状

7. 全球磁致伸缩材料市场(按应用领域划分)

  • 感应器和换能器
  • 致动器和电机
  • 声吶和水下声学
  • 能源采集系统
  • 结构健康监测(SHM)

第八章 全球磁致伸缩材料市场(依最终用户划分)

  • 航太/国防
  • 製造与自动化
  • 医疗设备
  • 家用电器
  • 能源电力

9. 全球磁致伸缩材料市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 企业概况

  • TdVib, LLC
  • Metglas, Inc.
  • VACUUMSCHMELZE GmbH & Co. KG
  • Arnold Magnetic Technologies Corporation
  • TDK Corporation
  • Cedrat Technologies SA
  • Mide Technology Corporation
  • Grirem Advanced Materials Co., Ltd.
  • Gansu Tianxing Rare Earth Functional Materials Co., Ltd.
  • Advanced Cerametrics, Inc.
  • LORD Corporation
  • Kyocera Corporation
  • Hitachi Metals, Ltd.
  • Emerson Electric Co.
  • Kenco Engineering Co.
Product Code: SMRC33045

According to Stratistics MRC, the Global Magnetostrictive Material Market is accounted for $2.0 billion in 2025 and is expected to reach $3.8 billion by 2032, growing at a CAGR of 9.4% during the forecast period. The magnetostrictive material focuses on materials that change shape in response to magnetic fields and generate magnetic responses under mechanical stress. Sensors, actuators, sonar systems, and precision control devices all use these materials. Growth is driven by demand for high-precision sensing, industrial automation, defense and marine applications, smart manufacturing, and increasing adoption of advanced materials in energy and aerospace systems.

Market Dynamics:

Driver:

High precision and reliability requirements in sensors and actuators

The escalating demand for high-accuracy sensing and motion control systems across the aerospace, automotive, and medical sectors is a primary driver for this market. Magnetostrictive materials, such as Terfenol-D, provide exceptional sensitivity and rapid response times, which are essential for precision positioning in robotics and advanced submicron machining. Furthermore, their solid-state nature ensures high reliability and a long operational lifespan compared to traditional mechanical systems. This inherent durability makes them the preferred choice for mission-critical applications where failure is not an option. Additionally, the shift toward Industry 4.0 is further accelerating the integration of these high-performance materials.

Restraint:

High cost of rare-earth-based materials

A significant bottleneck for the widespread adoption of giant magnetostrictive materials is the prohibitive cost of essential rare-earth elements like terbium and dysprosium. These elements are expensive to extract and refine, directly inflating the final price of high-strain alloys. Consequently, many cost-sensitive industries still favor piezoelectric or electromagnetic alternatives, despite their performance limitations. Moreover, the intensive processing required to produce these specialized materials adds another layer of financial burden to the manufacturing cycle. Furthermore, small and medium-sized enterprises often find the high initial capital investment a deterrent, which limits market penetration in emerging industrial sectors globally.

Opportunity:

Energy harvesting from vibrations in industrial and automotive settings

The ability of magnetostrictive materials to convert mechanical stress into electrical energy presents a lucrative opportunity in the field of vibration energy harvesting. As industries move toward self-powered wireless sensor nodes for structural health monitoring, these materials offer a robust alternative to batteries. In automotive settings, capturing wasted kinetic energy from engine vibrations or suspension movements can significantly improve overall vehicle efficiency. Additionally, the lack of depolarization issues compared to piezoelectric materials gives magnetostrictive harvesters a distinct advantage in harsh, high-vibration environments.

Threat:

Supply chain risk and price volatility of rare earth elements

Trade tensions and export restrictions from dominant producing nations often lead to unpredictable price spikes and material shortages. This volatility makes it challenging for manufacturers to maintain stable pricing and long-term production schedules. Furthermore, geopolitical instability can disrupt the flow of raw materials overnight, forcing companies to seek expensive alternatives or risk project delays. Further restricting the worldwide supply of these essential elements and possibly raising overhead costs are the increasingly stringent environmental regulations pertaining to rare-earth extraction.

Covid-19 Impact:

The COVID-19 pandemic caused significant short-term disruptions in the magnetostrictive material market, primarily due to the sudden halt in industrial manufacturing and global logistics. Factory closures led to a sharp decline in demand from the automotive and aerospace sectors. Furthermore, mining operations faced labor shortages and operational restrictions, causing delays in the supply of raw rare-earth materials. However, the market recovered as industries pivoted toward automation and remote monitoring solutions. This transition highlighted the long-term necessity of resilient, high-precision sensing technologies in a post-pandemic world.

The rods & bars segment is expected to be the largest during the forecast period

The rods & bars segment is expected to account for the largest market share during the forecast period, as they provide the most efficient geometry for longitudinal strain applications. Furthermore, the ease of integrating these standardized forms into existing industrial machinery simplifies the design process for engineers. Additionally, advancements in material processing have improved the uniformity and performance of large-scale rods.

The industrial manufacturing & automation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the industrial manufacturing & automation segment is predicted to witness the highest growth rate as manufacturers seek to enhance production speed and accuracy. Also, adding magnetostrictive parts to feedback control systems enables immediate changes, which helps cut down on waste and downtime. Additionally, the expansion of the electronics assembly sector further fuels this segment's growth.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. This leading position is supported by the presence of major aerospace and defense contractors who utilize these materials in sonar systems and vibration damping. Furthermore, the region's robust research and development infrastructure fosters continuous innovation in material science and smart systems. Additionally, the high adoption rate of advanced medical devices and precision surgical tools in the United States significantly contributes to market revenue. Moreover, government initiatives promoting clean energy and high-tech manufacturing continue to bolster the domestic demand for magnetostrictive solutions.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This accelerated growth is driven by the massive expansion of the automotive and consumer electronics industries in China, India, and Japan. Furthermore, the region's status as a global hub for rare-earth production provides local manufacturers with a competitive advantage in terms of material availability and cost. Additionally, increasing investments in industrial automation and the rapid rollout of 5G infrastructure are creating new avenues for magnetostrictive sensor applications. Moreover, supportive government policies focused on "Made in China 2025" and similar initiatives are propelling technological advancements.

Key players in the market

Some of the key players in Magnetostrictive Material Market include TdVib, LLC, Metglas, Inc., VACUUMSCHMELZE GmbH & Co. KG, Arnold Magnetic Technologies Corporation, TDK Corporation, Cedrat Technologies SA, Mide Technology Corporation, Grirem Advanced Materials Co., Ltd., Gansu Tianxing Rare Earth Functional Materials Co., Ltd., Advanced Cerametrics, Inc., LORD Corporation, Kyocera Corporation, Hitachi Metals, Ltd., Emerson Electric Co., and Kenco Engineering Co.

Key Developments:

In December 2025, Arnold Magnetic Technologies Corporation introduced the new rare-earth supply agreement with Less Common Metals and Solvay, reinforcing secure inputs for high-performance magnetic alloys used alongside magnetostrictive devices.

In November 2025, VACUUMSCHMELZE GmbH & Co. KG (VAC) introduced the new rare-earth supply partnerships (Aclara, Torngat Metals) to strengthen advanced magnetic material development that underpins magnetostrictive systems.

Material Types Covered:

  • Rare Earth Magnetostrictive Materials
  • Iron-Based Alloys
  • Ferrite Magnetostrictive Materials
  • Amorphous & Nanocrystalline Alloys
  • Magnetostrictive Composites & Thin Films

Product Forms Covered:

  • Rods & Bars
  • Plates & Sheets
  • Powders & Microspheres
  • Tubes & Specialized Geometries

Applications Covered:

  • Sensors & Transducers
  • Actuators & Motors
  • Sonar & Underwater Acoustics
  • Energy Harvesting Systems
  • Structural Health Monitoring (SHM)

End Users Covered:

  • Automotive
  • Aerospace & Defense
  • Industrial Manufacturing & Automation
  • Healthcare & Medical Devices
  • Consumer Electronics
  • Energy & Power

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Magnetostrictive Material Market, By Material Type

  • 5.1 Introduction
  • 5.2 Rare Earth Magnetostrictive Materials
  • 5.3 Iron-Based Alloys
  • 5.4 Ferrite Magnetostrictive Materials
  • 5.5 Amorphous & Nanocrystalline Alloys
  • 5.6 Magnetostrictive Composites & Thin Films

6 Global Magnetostrictive Material Market, By Product Form

  • 6.1 Introduction
  • 6.2 Rods & Bars
  • 6.3 Plates & Sheets
  • 6.4 Powders & Microspheres
  • 6.5 Tubes & Specialized Geometries

7 Global Magnetostrictive Material Market, By Application

  • 7.1 Introduction
  • 7.2 Sensors & Transducers
  • 7.3 Actuators & Motors
  • 7.4 Sonar & Underwater Acoustics
  • 7.5 Energy Harvesting Systems
  • 7.6 Structural Health Monitoring (SHM)

8 Global Magnetostrictive Material Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive
  • 8.3 Aerospace & Defense
  • 8.4 Industrial Manufacturing & Automation
  • 8.5 Healthcare & Medical Devices
  • 8.6 Consumer Electronics
  • 8.7 Energy & Power

9 Global Magnetostrictive Material Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 TdVib, LLC
  • 11.2 Metglas, Inc.
  • 11.3 VACUUMSCHMELZE GmbH & Co. KG
  • 11.4 Arnold Magnetic Technologies Corporation
  • 11.5 TDK Corporation
  • 11.6 Cedrat Technologies SA
  • 11.7 Mide Technology Corporation
  • 11.8 Grirem Advanced Materials Co., Ltd.
  • 11.9 Gansu Tianxing Rare Earth Functional Materials Co., Ltd.
  • 11.10 Advanced Cerametrics, Inc.
  • 11.11 LORD Corporation
  • 11.12 Kyocera Corporation
  • 11.13 Hitachi Metals, Ltd.
  • 11.14 Emerson Electric Co.
  • 11.15 Kenco Engineering Co.

List of Tables

  • Table 1 Global Magnetostrictive Material Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Magnetostrictive Material Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 3 Global Magnetostrictive Material Market Outlook, By Rare Earth Magnetostrictive Materials (2024-2032) ($MN)
  • Table 4 Global Magnetostrictive Material Market Outlook, By Iron-Based Alloys (2024-2032) ($MN)
  • Table 5 Global Magnetostrictive Material Market Outlook, By Ferrite Magnetostrictive Materials (2024-2032) ($MN)
  • Table 6 Global Magnetostrictive Material Market Outlook, By Amorphous & Nanocrystalline Alloys (2024-2032) ($MN)
  • Table 7 Global Magnetostrictive Material Market Outlook, By Magnetostrictive Composites & Thin Films (2024-2032) ($MN)
  • Table 8 Global Magnetostrictive Material Market Outlook, By Product Form (2024-2032) ($MN)
  • Table 9 Global Magnetostrictive Material Market Outlook, By Rods & Bars (2024-2032) ($MN)
  • Table 10 Global Magnetostrictive Material Market Outlook, By Plates & Sheets (2024-2032) ($MN)
  • Table 11 Global Magnetostrictive Material Market Outlook, By Powders & Microspheres (2024-2032) ($MN)
  • Table 12 Global Magnetostrictive Material Market Outlook, By Tubes & Specialized Geometries (2024-2032) ($MN)
  • Table 13 Global Magnetostrictive Material Market Outlook, By Application (2024-2032) ($MN)
  • Table 14 Global Magnetostrictive Material Market Outlook, By Sensors & Transducers (2024-2032) ($MN)
  • Table 15 Global Magnetostrictive Material Market Outlook, By Actuators & Motors (2024-2032) ($MN)
  • Table 16 Global Magnetostrictive Material Market Outlook, By Sonar & Underwater Acoustics (2024-2032) ($MN)
  • Table 17 Global Magnetostrictive Material Market Outlook, By Energy Harvesting Systems (2024-2032) ($MN)
  • Table 18 Global Magnetostrictive Material Market Outlook, By Structural Health Monitoring (SHM) (2024-2032) ($MN)
  • Table 19 Global Magnetostrictive Material Market Outlook, By End User (2024-2032) ($MN)
  • Table 20 Global Magnetostrictive Material Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 21 Global Magnetostrictive Material Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 22 Global Magnetostrictive Material Market Outlook, By Industrial Manufacturing & Automation (2024-2032) ($MN)
  • Table 23 Global Magnetostrictive Material Market Outlook, By Healthcare & Medical Devices (2024-2032) ($MN)
  • Table 24 Global Magnetostrictive Material Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 25 Global Magnetostrictive Material Market Outlook, By Energy & Power (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.