钠离子电池(SIB)技术发展趋势及市场预测(至2035年)
市场调查报告书
商品编码
1419615

钠离子电池(SIB)技术发展趋势及市场预测(至2035年)

<2024> SIBs Technology Development Trends and Market Forecast (~2035)

出版日期: | 出版商: SNE Research | 英文 201 Pages | 商品交期: 请询问到货日

价格
简介目录

2022年,碳酸锂的交易价格为每吨60万元人民币(约1.11亿韩元)。考虑到去年锂的平均售价约为11万元人民币(约2,000万韩元),这是一个显着的成长。如上所述,价格不稳定的锂价格飙升,正在增加钠离子电池的重要性。

SIB(钠离子电池)是中国最大的电池企业CATL于2021年研发生产的新一代电池。 SIB是在以锂离子电池(LIB)为主流的二次电池市场中具有价格竞争力的新一代电池。虽然其能量密度不如LIB,但具有较高的电化学稳定性、较高的低温容量维持率以及较高的充放电性能。

钠和锂具有相似的化学和电化学性质。因此,SIB製造流程的优点是可以转移到LIB製造。因此,它正在成长为一个有吸引力的行业,并以中国市场为起点,全面进军市场。

在中国,使用SIB的摩托车和电动车已经开始贩售。然而,当2023年电动车市场进入全面调整期时,SIB的退款销售价格截至2024年1月跌至8.6万元/吨。原物料价格的下跌使得SIB的低成本竞争力变得不再重要,这加剧了许多计划在2022年竞争后进行量产的SIB供应商的担忧。

本报告分析了全球钠离子电池(SIB)的技术和市场趋势。在技□□术分析中,我们探讨了目前主要零件(正极(正极)、负极(负极)、电解液、隔膜)的主要製造方法和核心技术,以及未来的发展方向。此外,市场分析还调查并预测了与LFP(磷酸铁锂)电池相比的价格竞争力前景、行业内渗透率的趋势以及每种产品的需求和市场规模。

本报告的优点

1.技术

  • 最新技术趋势与公司/技术趋势:依材料划分的 SIB 材料
  • 合成製程:依材料分类
  • 各公司核心专利技术:依材料分类
  • SNE 研究的技术知识(问题与发展方向)

2.市场

  • 计算原型和批量生产阶段的 BOM(物料清单)成本
  • 价格竞争分析:磷酸锂铁电池价格预测情境比较
  • 透过市场渗透率/产业分析和特定领域渗透率分析来分析需求和市场规模
  • SIB 材料和电池供应预测(截至 2035 年)
  • 全球33家钠离子电池相关企业趋势调查

目录

第一章简介

  • 电池发展史
    • 二次电池概述
    • 铅酸电池
    • 镍氢电池
    • 镍镉电池
    • 锂离子电池
  • 锂离子电池问题

第 2 章钠离子电池(SIB)

  • SIB的定义与特征
    • SIB 的定义
    • SIB的特点
    • LIB和SIB的性能和特点比较
  • SIB的优势
  • SIB 的缺点和局限性
  • SIB 製造流程

第3章SIB正极材料

  • 正极材料的特性
  • 正极材料的种类
    • 层状氧化物
    • 聚阴离子化合物
    • 普鲁士蓝类似物 (PBA)
    • 普鲁士白 (PW)
  • 正极材料合成方法
    • 层状氧化物
      • 固体方法
      • 溶胶凝胶法
      • 油包水(W/I/O)乳液干燥法
    • 聚阴离子化合物
      • 固体方法
      • 溶胶凝胶法
      • 水热合成
      • 有机酸溶解
      • 机械化学合成
    • 普鲁士蓝类似物 (PBA)
      • 共沉淀法
      • 电镀法
  • 正极材料主要专利:依类型
  • 正极材料最新趋势
    • 层状氧化物
    • 聚阴离子化合物
    • 普鲁士蓝类似物 (PBA)

第4章SIB负极材料

  • 负极材料的特性
  • 负极材料的种类
    • 插入型
    • 有机化合物
    • 转化/反应类型
    • 合金型
    • 转化/合金化类型
  • 负极材料的合成方法
    • 插入型
      • 硬碳
      • 参考:硬碳原料种类
      • 软碳:Hina Battery
      • 软碳:中石化
      • 钛氧化物:水热合成
      • 钛基氧化物:溶剂热合成
      • 钛基固体氧化物
    • 转化/反应类型
      • 磷化物:机械性粉碎
      • 硫化物:酸热合成
      • 金属硒化物:水热合成
      • 金属硒化物:气相盐化
    • 合金型
      • 更换
    • 转化/合金化类型
      • 硒化物:溶剂热合成
      • 硒化物:化学反应
      • 硫化物:溶剂热合成
      • 硫化物:固体
  • 负极材料核心专利:依类型
  • 负极材料的最新趋势
    • 插入型
    • 有机化合物
    • 转化反应
    • 合金材质
    • 转换合金材料

第五章SIB电解质

  • 电解质的特性
  • 电解质的类型
    • 有机电解质
    • 离子液体电解质
    • 水电解质
    • 无机固体电解质
    • 凝胶聚合物电解质
    • 混合电解质
  • 电解质的合成方法
    • 液体电解质的合成方法
    • 固态电解质的合成方法
  • 电解质溶剂
  • 电解质核心专利:依材料分类
  • 电解质的最新趋势
    • 离子液体电解质
    • 无机固体电解质
    • 凝胶聚合物电解质

第 6 章 SIB 分隔符号

  • 分离器特性
  • 分隔符号的类型
    • 聚烯烃复合隔板
    • 不织布隔板
  • 分离器合成方法
    • 聚烯烃复合隔板
    • 不织布隔板
  • 分离器核心专利:依材料分类
  • 分离器的最新趋势

第 7 章 SNE 分析:技术

  • SIB 问题:依材料分类
    • 正极材料的问题
      • 层状氧化物
      • PBA
      • 聚阴离子化合物
    • 阳极材料的问题
      • 插入型
      • 有机材料
      • 转化/合金化类型
    • 电解质问题
    • 分隔符号问题
  • SIB的发展方向

第 8 章 SIB 价格预测

  • SIB 成本分析
    • 原型阶段的 BOM 成本
    • 量产阶段的BOM成本
  • SIB 价格预测
  • 价格竞争力分析

第九章SIB市场现况及预测

  • 二次电池市场预测
    • 全球二次电池市场中长期预测(产能)
  • SIB产业渗透率分析
    • 电动车需求分析
    • 电动车渗透率分析
      • 保守情景
      • 乐观情景
    • LEV(轻型电动车)渗透率分析
      • 保守情景
      • 乐观情景
    • ESS普及率分析
      • ESS 市场预测:依地区划分
      • 保守情景
      • 乐观情景
  • SIB 需求预测:依场景划分
    • SIB 需求预测:基于保守情境的预测
    • SIB 市场规模预测:基于保守情境的预测
    • SIB 需求预测:基于乐观情境的预测
    • SIB 市场规模预测:基于乐观情境的预测
  • 产业链概要
  • 产业链:电池製造商
    • SIB产能
    • SIB 供应场景
  • 产业链:正极材料
    • SIB正极材料及主要企业特性:依类型
    • SIB正极材料产能预测
  • 产业链:负极材料
    • SIB正极材料及主要企业特性:依类型
    • SIB正极材料产能预测
  • 产业链:电解液
    • SIB正极材料及主要企业特性:依类型
    • SIB正极材料产能预测

第10章SIB发展状况:依公司划分

  • 中国
    • CATL
    • Hina Battery
    • Huayang Energy
    • ZOOLNASM
    • Lifun
    • Malion
    • ET
    • Yadi Huayu
    • Transimage (TIC)
    • VEKEN
    • DFD
    • SQ Group
    • BTR
    • Great Power
    • BYD
    • Weifang Energy
    • ZEC
    • Ronbay
    • Shanshan
    • NTEL
    • Tuna Corporation
  • 日本
    • NGK INSULATIORS
    • Kuraray
    • Mitsui Metals
    • Nippon Electric Glass
  • 韩国
    • Aekyung Chemical
    • Energy 11 
  • 英国
    • Faradion
  • 法国
    • Tiamet
  • 瑞典
    • Altris
  • 美国
    • Natron Energy
    • Novasis
  • 印度
    • Indi Energy
简介目录
Product Code: 216

In 2022, the price of lithium carbonate was traded at 600,000 yuan (about 111 million won) per ton. Considering that the average lithium sales price in the previous year was about 110,000 yuan (about 20 million won), it was a huge increase of price.

As such, the surge in lithium prices with high price instability has added weight to the emergence of sodium-ion batteries. SIBs were announced for development and production as the next-generation battery by China's largest battery company, CATL, back in 2021.

SIBs are the next-generation batteries that are currently trying to commercialize their price competitiveness as weapons in the secondary battery market, where lithium-ion batteries (LIBs) are the mainstream. It is a battery using sodium as a raw material instead of lithium. Although its energy density is lower than that of LIB, it has high electrochemical stability, high capacity retention rate at low temperature and high charging / discharging performance.

Sodium is a metal located in Group 1 of the Periodic Table with lithium and has similar chemical / electrochemical properties. Therefore, the manufacturing process of SIBs has the advantage of being designed to be convertible into LIBs manufacturing. As such, the entry into the SIBs industry shows the unity of the fundamental activities (operation, marketing, service) and support activities (technology development, manpower). So it is growing into an attractive industry and is preparing for full-scale market penetration starting with Chinese market.

China has already begun the launch of two-wheeled vehicles and electric vehicles using SIBs. Yadi, China's leading electric motorcycle company, established its subsidiary company Huayu and launched the electric motorcycle model 'Ji Na No.1' in late 2023. And in January 2024, the Chinese electric vehicle brand JAC began selling Huaxianzi electric vehicles using 32140 cylindrical sodium ion battery of Hina Battery.

However, as EV market entered the chasm section in earnest in 2023, it fell to 86,000 yuan per ton as of January 2024. The drop in raw material prices has made the low-cost competitiveness of sodium-ion batteries meaningless, adding to the concerns of many sodium-ion battery suppliers who planned to mass-produce them following CATL in 2022.

This report covers the current status and prospects of sodium-ion batteries based on 2023 battery market, where raw material prices have bottomed out.

First, the technology part deals with a development direction, synthesis method, and core patents of the four major materials (Cathode, Anode, Electrolyte, Separator) of companies and predicts future technology direction through insight of SNE Research.

In the market analysis, the forecast of price, which is the most important part, was compared with LFP to analyze future competitiveness, and the battery industry forecast, which is the core data of SNE research, was applied to the penetration industry to understand the demand and market size of each product.

Through this report, you can look at the latest trends in sodium-ion batteries and see if there is any investment value that can be another layout for manufacturers to expand product positioning in the future battery market.

The strong point of this report:

1. Technology

  • The latest technological trends and corporate technology trends by materials of SIBs
  • Synthesis process by materials
  • Core patent technology of companies by materials
  • Technical insights of SNE Research (problems and development directions)

2. Market

  • The cost BOM calculation of the pilot step and mass production step
  • Analysis of price competitiveness comparing the price forecast of LFP batteries across scenarios.
  • Analysis of demand and market size through market penetration industry analysis and sector-by-sector penetration rate analysis
  • Supply forecast of SIBs' material and battery (~2035)
  • Understanding trends of 33 global companies related to sodium-ion batteries

The above contents are divided into 10 chapters, and the approximate contents of each item are as shown in the table of contents below. (201 page in total)

Table of Contents

1. Introduction

  • 1.1. History of Battery Development
    • 1.1.1. Introduction of Secondary Batteries
    • 1.1.2. Lead-Acid Battery
    • 1.1.3. Ni-MH Battery
    • 1.1.4. Nickel Cadmium Battery
    • 1.1.5. Li-ion Battery
  • 1.2. Problems of Lithium-ion Batteries

2. Sodium-ion Batteries (SIBs)

  • 2.1. Definition and Characteristics of SIBs
    • 2.1.1. Definition of SIBs
    • 2.1.2. Characteristics of SIBs
    • 2.1.3. Comparison of performance characteristics of LIBs vs SIBs
  • 2.2. Advantages of SIBs
  • 2.3. Disadvantages and Limits of SIBs
  • 2.4. Manufacturing Process of SIBs

3. Cathode Materials of SIBs

  • 3.1. Characteristics of Cathode Materials
    • 3.1.1. Research Direction of Cathode Materials
  • 3.2. Types of Cathode Materials
    • 3.2.1. Layered Oxides
    • 3.2.2. Polyanion Compounds
    • 3.2.3. Prussian Blue Analogues (PBAs)
    • 3.2.4. Prussian White (PW)
  • 3.3. Synthesis Method of Cathode Materials
    • 3.3.1. Layered Oxides
      • Solid-state method
      • Sol-gel method
      • Water-in-oil type emulsion-drying method
    • 3.3.2. Polyanion Compounds
      • Solid-state method
      • Sol-gel method
      • Hydrothermal synthesis
      • Organic acid dissolution
      • Mechanochemical synthesis
    • 3.3.3. Prussian Blue Analogues (PBAs)
      • Co-precipitation method
      • Electrodeposition method
  • 3.4. Core Patents by Types of Cathode Materials
  • 3.5. Latest Trends of Cathode Materials
    • 3.5.1. Layered Oxides
    • 3.5.2. Polyanion Compounds
    • 3.5.3. Prussian Blue Analogues (PBAs)

4. Anode Materials of SIBs

  • 4.1. Characteristics of Anode Materials
  • 4.2. Types of Anode Materials
    • 4.2.1. Intercalation Type
    • 4.2.2. Organic Compounds
    • 4.2.3. Conversion Reaction Type
    • 4.2.4. Alloying Type
    • 4.2.5. Conversion-Alloying Type
  • 4.3. Synthesis Method of Anode Materials
    • 4.3.1. Intercalation Type
      • Hard Carbon
      • Reference. Raw Material Types of Hard Carbon
      • Soft Carbon-Hina Battery
      • Soft Carbon-Sinopec
      • Ti-based Oxides-Hydrothermal
      • Ti-based Oxides-Solvothermal
      • Ti-based Oxides-Solid-state
    • 4.3.2. Conversion Reaction Type
      • Phosphides-Mechanical Milling
      • Sulfides-Hydrothermal
      • Metal Selenides-Hydrothermal
      • Metal Selenides-Gas-phase salinization
    • 4.3.3. Alloying type
      • Replacement
    • 4.3.4. Conversion-Alloying type
      • Selenides-Solvothermal
      • Selenides-Chemical reaction
      • Sulfides-Solvothermal
      • Sulfides-Solid-state
  • 4.4. Core Patent by Types of Anode Materials
  • 4.5. Latest Trends of Anode Materials
    • 4.5.1. Intercalation Type
    • 4.5.2. Organic Compound
    • 4.5.3. Conversion Reaction
    • 4.5.4. Alloying Materials
    • 4.5.5. Conversion-Alloying Materials

5. Electrolytes of SIBs

  • 5.1. Characteristics of Electrolytes
    • 5.1.1. Role of Electrolytes
    • 5.1.2. Key Assessment Factors of Electrolytes
  • 5.2. Types of Electrolytes
    • 5.2.1. Organic Electrolytes
    • 5.2.2. Ionic Liquids Electrolytes
    • 5.2.3. Aqueous Electrolytes
    • 5.2.4. Inorganic Solid Electrolytes
    • 5.2.5. Gel Polymer Electrolytes
    • 5.2.6. Hybrid Electrolytes
  • 5.3. Synthesis Methods of Electrolytes
    • 5.3.1. Synthesis Methods of Liquid Electrolytes
    • 5.3.2. Synthesis Methods of Solid Electrolytes
  • 5.4. Solvents of Electrolytes
  • 5.5. Core Patent by Material Types of Electrolytes
  • 5.6. Latest Trends of Electrolytes
    • 5.6.1. Ionic Liquids Electrolytes
    • 5.6.2. Inorganic Solid Electrolytes
    • 5.6.3. Gel Polymer Electrolytes

6. Separators of SIBs

  • 6.1. Characteristics of Separators
  • 6.2. Types of Separators
    • 6.2.1. Polyolefin Composite Separators
    • 6.2.2. Nonwoven Separators
  • 6.3. Synthesis Methods of Separators
    • 6.3.1. Polyolefin Composite Separators
    • 6.3.2. Nonwoven Separators
  • 6.4. Core Patents by Materials of Separators
  • 6.5. Latest Trends of Separators

7. SNE Insight-Technology

  • 7.1. Problems by Materials of SIBs
    • 7.1.1. Problems of Cathode Materials
      • Layered oxides
      • PBAs
      • Polyanion Compounds
    • 7.1.2. Problems of Anode Materials
      • Intercalation type
      • Organic Material
      • Conversion&Alloying type
    • 7.1.3. Problems of Electrolytes
    • 7.1.4. Problems of Separators
  • 7.2. Development Direction of SIBs

8. Price Forecast of SIBs

  • 8.1. Cost Analysis of SIBs
    • 8.1.1. Cost BOM of The Pilot Step
    • 8.1.2. Cost BOM of The Mass Production Step
  • 8.2. Price Forecast of SIBs
  • 8.3. Analysis of Price Competitiveness

9. SIBs Market Status and Forecast

  • 9.1. Market Forecast of Secondary Batteries
    • Mid to Long-Term Market Forecast of Global Secondary Battery (Capacity)
  • 9.2. Analysis of SIBs Penetration Industry
    • 9.2.1. Analysis of Electric Vehicle Demand
    • 9.2.2. Analysis of Electric Vehicle Penetration Rate
      • Conservative Scenario
      • Positive Scenario
    • 9.2.3. Analysis of LEV(light ev) Penetration Rate
      • Conservative Scenario
      • Positive Scenario
    • 9.2.4. Analysis of ESS Penetration Rate
      • Market Forecast of ESS by Region
      • Conservative Scenario
      • Positive Scenario
  • 9.3. Demand Forecast by SIBs Scenario
    • 9.3.1. Demand Forecast of SIBs by Conservative Scenario
    • 9.3.2. Market Size Forecast of SIBs by Conservative Scenario
    • 9.3.3. Demand Forecast of SIBs by Positive Scenario
    • 9.3.4. Market Size Forecast of SIBs by Positive Scenario
  • 9.4. Introduction of Industry Chain
  • 9.5. Industry Chain-Battery Manufacturers
    • 9.5.1. Production Capacity of SIBs
    • 9.5.2. Scenario of SIBs Supply
  • 9.6. Industry Chain-Cathode Materials
    • 9.6.1. Characteristics by Types of SIBs Cathode Material and Major Companies
    • 9.6.2. Production Capacity Forecast of SIBs Cathode Materials
  • 9.7. Industry Chain-Anode Materials
    • 9.7.1. Characteristics by Types of SIBs Anode Material and Major Companies
    • 9.7.2. Production Capacity Forecast of SIBs Anode Materials
  • 9.7. Industry Chain-Electrolytes
    • 9.7.1. Characteristics by Types of SIBs Electrolyte and Major Companies
    • 9.7.2. Production Capacity Forecast of SIBs Electrolytes

10. SIBs Development Status of Companies

  • 10.1. China
    • 10.1.1. CATL
    • 10.1.2. Hina Battery
    • 10.1.3. Huayang Energy
    • 10.1.4. ZOOLNASM
    • 10.1.5. Lifun
    • 10.1.6. Malion
    • 10.1.7. ET
    • 10.1.8. Yadi Huayu
    • 10.1.9. Transimage (TIC)
    • 10.1.10. VEKEN
    • 10.1.11. DFD
    • 10.1.12. SQ Group
    • 10.1.13. BTR
    • 10.1.14. Great Power
    • 10.1.15. BYD
    • 10.1.16. Weifang Energy
    • 10.1.17. ZEC
    • 10.1.18. Ronbay
    • 10.1.19. Shanshan
    • 10.1.20. NTEL
    • 10.1.21. Tuna Corporation
  • 10.2. Japan
    • 10.2.1. NGK INSULATIORS
    • 10.2.2. Kuraray
    • 10.2.3. Mitsui Metals
    • 10.2.4. Nippon Electric Glass
  • 10.3. Korea
    • 10.3.1. Aekyung Chemical
    • 10.3.2. Energy 11
  • 10.4. UK
    • Faradion
  • 10.5. France
    • Tiamet
  • 10.6. Sweden
    • Altris
  • 10.7. USA
    • 10.7.1. Natron Energy
    • 10.7.2. Novasis
  • 10.8. India
    • Indi Energy