4680电池技术发展趋势及前景
市场调查报告书
商品编码
1419616

4680电池技术发展趋势及前景

4680 Battery Technology Development Trend and Outlook

出版日期: | 出版商: SNE Research | 英文 330 Pages | 商品交期: 请询问到货日

价格
简介目录

Tesla收购了 Maxwell Technologies,这是一种干电极製程 (DBE),用于生产 4680 等大型圆柱形电池。干电极製程的特点是干燥能耗低、干燥过程所需厂房面积小、生产成本低。如果干电极製程应用于两个电极,则可以显着节省成本,并为电动车製造商和生产公司创造双赢的局面。干电极製程是Tesla 4,680电池采用的製造技术之一,各种技术在4680生产中的实施预计将促使整体成本降低56%。

Tesla目前在德克萨斯州奥斯汀的超级工厂生产带有干涂层电极的 4680 电池,该工厂也是 Model Y 和 Cybertruck 的生产地。根据现有消息,Tesla尚未完成快速生产 4680 电池所需规模的干涂工艺,以实现生产目标。不过,Panasonic、LG、CATL、EVE、BAK、SVOLT等多家公司已进入4,680电池的研发和量产。4680趋势在全球愈演愈烈,BMW、Daimler、Apple、Lucid、Rivian、Xiaopeng、NIO、FAW、JAC Motors等都宣布采用4680电池。

xEV 的 4680 电池需求预计到 2025 年将达到约 72GWh,到 2030 年将达到约 650GWh。预计到2025年Tesla将拥有约80GWh,BMW约59GWh,其他公司至2025年约44GWh。

儘管干式涂布过程面临课题,但采用 4680 电池的原因有很多。以下是4680电芯的突出优点。

(1)能量密度高

4680电池的容量是2170电池的五倍,仅外部尺寸变化。此外,透过使用Si/C(硅/碳)负极,能量密度可提高10%。此外,透过使用Si/C负极,能量密度可提高高达20%,超过300Wh/kg。

(2)安全

其 "圆柱形" 设计被认为是解决热失控的最强解决方案,热失控是与电池组内热传导相关的关键安全问题。近年来发生的所有电池事故都是由于Pack内特定电芯发生热失控,产生大量热量加热周围电芯,导致热失控传播。

但由于圆柱电池的电芯容量较小,单一电池因热失控释放的能量比棱柱形或袋形电池低,热失控传播的可能性也较低。圆柱形设计是弯曲的,这在一定程度上限制了电池之间的热传递。这意味着,儘管圆柱形电池由于其弯曲表面而完全接触,但仍存在很大的间隙,这在一定程度上限制了电池之间的热传递。

(3)快速充电性能

4680电池修改了结构,提高充电速度,并适应材料系统的快速充电要求。此外,它还采用了全旗设计,进一步有助于加快充电速度。

(4)生产效率高→成本低

圆柱电池是最早实现商业化的锂离子电池,生产过程最为成熟。与棱柱形或袋形电池相比,这反映在更高的组装效率上。4680目前的生产效率尚不清楚,但同心捲绕设计的圆柱电池的特性决定了其生产率。儘管大型圆柱形电池的生产率低于小型电池,但它们比棱柱形或软包电池快得多。1865/2170 电池的生产率通常约为 200PPM(每分钟 200 个电池)。另一方面,容量小于200Ah的方形电池的充电量约为10至12PPM,容量大于200Ah的大型方形电池的充电量约为10PPM。软包电池的生产效率更低。

(5) 规模化→降低BMS复杂度

以Tesla为例,圆柱电池容量极小,需要大量的电池才能达到给定的功率效能。例如,18650型至少需要7,000个电池,2170型至少需要4,000个电池。如此大量的电池为电池系统的热管理带来了重大课题。基于这个原因,许多汽车製造商都避免使用圆柱形电池。然而,随着4680时代的到来,所需的电池单元数量已减少至960至1,360单元之间。电池数量的减少意味着电池组内的空间利用率更高,并大大简化了所需的电池管理系统(BMS),解决了大型圆柱形电池的散热问题。

本报告调查了4680电池技术,并提供了发展趋势、生产前景、市场规模和成长率、材料和技术分析等。

目录

第一章 4680圆柱电池概述

  • Tesla Battery Day分析
  • Battery Day总结和主要发现
  • Tesla电池设计
  • Tesla电池製造工艺
  • Tesla的硅负极
  • Tesla的Hi-Ni正极
  • Tesla Cell 车辆集成
  • Tesla的电池成本改善
  • Tesla 4680电池开发
  • 46xx电池路线图
    • 全新 46xx 电池设计
    • 生产新型 46xx 电池

第二章 4680电池的发展趋势

  • 降低成本和提高效率的需求日益增长
  • 严格的安全要求
  • 快充成为未来趋势
  • 电池製造商进入市场的竞争
  • Tesla发展趋势
  • 全球OEM布局加速
  • 46xx 电池的详细规格:依製造商提供

第三章 4680电池详细技术

  • 正极
  • 负极
  • 其他电池材料
  • 生产流程

第四章 Tesla 4680电池组拆解

  • 概述
  • 电池拆解与分析
  • Tesla 4680 电池的电芯、电池组和工程分析

第五章 Tesla 4680电芯拆解及特点

  • 概括
  • 概述
  • 过去的研究
  • 详细分析
  • 具体实验
  • 结果与讨论
  • 结论

第六章 4680电池成功的技术

  • 多标籤技术
  • 极耳焊接技术
  • 冷却技术

第七章 提高4680电池能量密度、降低成本

  • 概述
  • 能量密度(向上箭头)/快速充电(向上箭头)/成本(向下箭头)
  • 采用高浓度电解液
  • 4680 电解液主要公司

第八章 4680电池发热问题的预测及缓解措施

  • 实验总结
  • 实验方法
  • 传热模型方程
  • 实验结果与讨论
  • 实验结论

第 9 章 圆柱形锂离子电池的设计、特性与製造

  • 概述
  • 实验材料与方法
  • 实验结果与讨论
  • 实验结论

第 10 章 电池尺寸、外壳材质及其对无铅圆柱形锂离子电池的影响

  • 整体概览
  • 实验
  • 实验结果与讨论
  • 实验结论

第十一章 4,680电池厂商及汽车整车厂现状

  • Tesla
  • Panasonic
  • LGES
  • SDI
  • EVE
  • BAK
  • CATL
  • Guoxuan Hi-TECH
  • SVOLT
  • CALB
  • Envision AESC
  • LISHEN
  • Easpring
  • Kumyang
  • BMW
  • Rimac

第十二章 Tesla 4680电池专利解析

  • 表电极电池 (PTC/US2019/059691)
  • 表式储能设备及其製作方法(PTC/US2021/050992)
  • 干式专利1(含颗粒状非纤维黏合剂:US11545666 B2)
  • 干式专利2(电极黏合剂钝化的组合物与方法:US11545667 B2)

第13章 4680电池市场前景

  • 整体市场展望
  • 4680关键材料市场展望
  • 4680需求展望及产能展望

第14章 Tesla 4680电池产量展望

  • 顾问公司对4680的展望
  • Tesla/BMW4680需求展望
  • Tesla Cybertruck 4680电池产量展望
简介目录
Product Code: 215

Tesla acquired Maxwell Technologies for the dry battery electrode process (DBE) used in the production of large cylindrical batteries like the 4680. The dry electrode process is characterized by low energy requirements for drying, a smaller factory footprint for the drying process, and lower production costs. If the dry coating process is applied to both electrodes, it could lead to significant cost reductions, creating a win-win situation for EV manufacturers and production companies. The dry electrode process is one of the manufacturing technologies employed by Tesla for the 4680 battery, and with the implementation of various technologies for 4680 production, an overall cost reduction of 56% is anticipated.

Tesla is currently producing 4680 cells with dry-coated electrodes at the Gigafactory in Texas Austin, where Model Y and Cybertruck are being manufactured. According to available information, Tesla has not yet completed the dry coating process on the scale required to rapidly produce 4680 cells to meet production targets. However, several companies, including Panasonic, LG, CATL, EVE, BAK, SVOLT, and others, have entered the development and mass production of 4680 cells. The 4680 trend is gaining momentum globally, with announcements from BMW, Daimler, Apple, Lucid, Rivian, Xiaopeng, NIO, FAW, JAC Motors, and others regarding the adoption of 4680 batteries.

According to the forecasts from SNE Research, the demand for xEV 4680 cells is projected to be approximately 72 GWh by the year 2025 and around 650 GWh by the year 2030. For Tesla, it is estimated to be around 80 GWh by the year 2025, for BMW around 59 GWh, and for other companies, approximately 44 GWh by the year 2025.

Despite the challenges of the dry coating process, there are several reasons for the adoption of the 4680 cells. Below are listed the outstanding advantages of the 4680 cells:

  • (1)High energy density: The capacity of the 4680 cells is five times that of the 2170 cells, with only a change in external dimensions. Additionally, by utilizing a Si/C (Silicon/Carbon) anode, it is possible to achieve a 10% increase in energy density. Furthermore, with the use of a Si/C anode, the energy density can be further increased by up to 20%, reaching beyond 300 Wh/kg.
  • (2)Safety: The "cylindrical" design is considered the most robust solution for thermal runaway, a critical safety issue associated with heat propagation within battery packs. Recent battery incidents have all been attributed to thermal runaway in specific battery cells within the pack, leading to the generation of a significant amount of heat that, in turn, heats up surrounding battery cells, resulting in the propagation of thermal runaway.

However, cylindrical batteries have a smaller cell capacity, and the energy released due to thermal runaway in a single battery is lower, reducing the likelihood of propagation compared to prismatic and pouch-shaped batteries. The curvature of the cylindrical design somewhat limits the heat transfer between batteries. In other words, even when cylindrical batteries are in complete contact due to their curved surfaces, there is still a significant gap, which somewhat restricts the heat transfer between batteries.

  • (3)Rapid charging performance: The 4680 battery undergoes structural changes to enhance its charging speed, adapting to the high-speed charging requirements of the material system. Additionally, it incorporates an "All flag" design, further contributing to the acceleration of charging speeds.

(4)High production efficiency -> Low cost

Cylindrical batteries were the first commercially available lithium-ion batteries and have the most mature production processes. This is reflected in higher assembly efficiency compared to prismatic and pouch-shaped batteries. While the current production efficiency of the 4680 is unknown, the characteristics of cylindrical batteries, with their concentric winding design, determine the production speed. Despite larger cylindrical batteries having a lower production speed than smaller ones, they are still much faster than prismatic and pouch-shaped batteries. The production rate for 1865/2170 batteries is typically around 200PPM (200 batteries /minute). Meanwhile, for prismatic batteries with a capacity below 200Ah, the rate is around 10-12PPM, and for larger prismatic batteries with a capacity exceeding 200Ah, it's around 10PPM. The production efficiency of pouch-shaped batteries is even lower.

(5)Scaling up -> Reduced BMS complexity

For Tesla, the predominantly smaller capacity of cylindrical battery cells meant that achieving specific power performance required an enormous total number of cells. For instance, 7000+ cells of the 18650 type or 4000+ cells of the 2170 type were needed. This high cell count posed significant challenges in terms of thermal management for the battery system. Consequently, many automakers were discouraged from adopting cylindrical batteries. However, with the advent of the 4680 era, the required number of battery cells has decreased to 960-1360 cells. The reduced cell count implies improved space utilization in the pack and a substantial simplification of the required Battery Management System (BMS), addressing issues related to heat dissipation in large cylindrical batteries.

In this report, SNE Research systematically organizes information from various sources, including presentations from each company related to the 4680, scattered data from disassembly and performance tests, and reviews of key papers. Through this comprehensive approach, the report analyzes the practical effects and performance improvements of the 4680 introduction. Furthermore, by referencing data from external research institutions, our report aims to assist readers in understanding the outlook and scale of the large cylindrical battery market.

Additionally, we provides an overview of the current status and key products of 4680 manufacturers. It also highlights the scale of Gigafactory facilities and indicates the correlation between the production volume and quantity of Cybertruck, offering intriguing insights into the manufacturability of the 4680. The goal is to provide comprehensive insights to researchers and individuals interested in this field.

The Strong Point of this report is as below:

  • 1. Summarizing the developmental trends and information related to the 4680 for an overall understanding and ease of comprehension.
  • 2. In-depth analysis and summarization of the disassembly reports for 4680 cells and packs to enhance understanding.
  • 3. Assessing the market and production outlook for 4680 batteries to understand market size and growth rates.
  • 4. Detailed analysis of materials and technologies applied to the 4680 through the examination of academic papers.

Table of Contents

1. 4680 Cylindrical Battery Overview

  • 1.1. Tesla Battery Day Analysis
  • 1.2. Battery Day Summary and Key Findings
  • 1.3. Tesla Battery Cell Design
  • 1.4. Tesla Battery Cell Manufacturing Process
    • 1.4.1. Coating
    • 1.4.2. Winding
    • 1.4.3. Assembly
    • 1.4.4. Formation
  • 1.5. Tesla Si-anode
  • 1.6. Tesla Hi-Ni Cathode
  • 1.7. Tesla Cell - Vehicle Integration
  • 1.8. Tesla Cell Cost Improvement
  • 1.9. Tesla 4680 Battery Development
    • 1.9.1. Development History
    • 1.9.2. Battery Specification
    • 1.9.3. Battery-adopted Tesla EV
    • 1.9.4. Battery Supplier
    • 1.9.5. Battery Production Timing
  • 1.10. 46xx Battery Roadmap
    • 1.10.1. New 46xx Cell Design
    • 1.10.2. New 46xx Cell Production

2. 4680 Battery Development Trend

  • 2.1. Increased Demand for Cost Reduction and Efficiency
  • 2.2. Demanding Safety Requirements
  • 2.3. Fast Charing as Future Trend
  • 2.4. Battery Makers Competition for Market Entrance
  • 2.5. Tesla Development Trend
    • 2.5.1. 4680 Sales Volume and Production Capacity
    • 2.5.2. 4680 Demand Calculation
  • 2.6. Global OEMs' Layout Acceleration
  • 2.7. 46xx Battery Detailed Specification by Maker

3. 4680 Battery Detailed Technology

  • 3.1. Cathode
    • 3.1.1. Application of Ultra High Nickel
    • 3.1.2. Establishment of Production Capacity
    • 3.1.3. Upgrade of Production Technology
  • 3.2. Anode
    • 3.2.1. Silicon-based Development
    • 3.2.2. Silicon-based Development Timeline
    • 3.2.3. Si-anode Modification
    • 3.2.4. Acceleration of Si-anode Industrialization
  • 3.3. Other Battery Materials
    • 3.3.1. SWCNT Conductive Material
    • 3.3.2. Steel Battery Can
    • 3.3.3. Al Battery Can
      • 3.3.3.1. Al housing Cell Design Concept
      • 3.3.3.2. 46xx Large-size Cylindrical Cell
      • 3.3.3.3. 46xx Jelly Roll Concept
      • 3.3.3.4. 46xx Jelly Roll Heat Transfer and Distribution
      • 3.3.3.5. 46xx Jelly Roll Heat Simulation
      • 3.3.3.6. 46xx Jelly Roll Cooling Improvement
  • 3.4. Production Process
    • 3.4.1. 4680 Battery Production Process Technology
    • 3.4.2. 4680 Production Process Differentiation
      • 3.4.2.1. Dry Electrode Coating
      • 3.4.2.2. Dry Process Examples
      • 3.4.2.3. Electrode and Tab Integrated Cutting
      • 3.4.2.4. Difficulty of Laser Welding
      • 3.4.2.5. Integrated Die casting and CTC

4. Tesla 4680 Battery Pack Disassembly

  • 4.1. Overview
  • 4.2. Battery Disassembly and Analysis
  • 4.3. Tesla 4680 Battery Cell, Pack, and Engineering Analysis
    • 4.3.1. Tesla 4680 Battery Design Data
    • 4.3.2. Pack Structure (Cell Direction)
    • 4.3.3. Electricity Connection with Each Cell
    • 4.3.4. Suggested Pack Assembly Method
    • 4.3.5. Model 3 Pack Analysis
      • 4.3.5.1. Pack Analysis Result (Summary)
      • 4.3.5.2. Details of Heat Release
    • 4.3.6. Model 3 Battery Current Collector

5. Tesla 4680 Battery Cell Disassembly and Characteristics

  • 5.1. Summary
  • 5.2. Overview
  • 5.3. Previous Studies
  • 5.4. Detailed Analysis
  • 5.5. Specific Experiment
    • 5.5.1. Test Cell Overview
    • 5.5.2. Cell Disassembly and Substance Extraction
    • 5.5.3. Structure and Element Analysis
    • 5.5.4. 3 Electrode Analysis
    • 5.5.5. Electrical Characteristics
    • 5.5.6. Thermal investigation
  • 5.6. Result and Consideration
    • 5.6.1. Cell and Jelly roll Structure
    • 5.6.2. Electrode Design
    • 5.6.3. Material Characteristics
    • 5.6.4. 3 Electrode Analysis
    • 5.6.5. Capacity and Impedance Analysis
    • 5.6.6. Similar OCV, DVA and ICA Analysis
    • 5.6.7. HPPC Analysis
    • 5.6.8. Thermal Characteristics Analysis
  • 5.7. Conclusion

6. Technologies for Success of 4680 Battery

  • 6.1. Multi(all) Tab Technology
  • 6.2. Tab Welding Technology
  • 6.3. Cooling Technology

7. 4680 Battery Energy Density Improvement and Cost Down

  • 7.1. Overview
  • 7.2. Energy Density (up arrow)/ Fast Charging (up arrow)/ Cost (down arrow)
    • 7.2.1. Blade Battery / High-Ni Prismatic Battery Comparison
    • 7.2.2. Increase of Fast Charging Rate
    • 7.2.3. Production Improvement and Cost Down with Dry Electrode (DBE)
  • 7.3. High-Concentration Electrolyte Adoption
    • 7.3.1. Decrease of 4680 Electrolyte Q'ty / GWh
    • 7.3.2. High-Concentration Electrolyte and LiFSI Addition
    • 7.3.3. Fluorine FEC Addition
  • 7.4. 4680 Electrolyte Major Players

8. 4680 Battery Heat Problem Prediction and Mitigation Solutions

  • 8.1. Experiment Summary
  • 8.2. Experiment Method
  • 8.3. Heat Transfer Model Equation
  • 8.4. Experiment Result and Discussion
  • 8.5. Experiment Conclusion

9. Cylindrical LIB Cell Design, Characteristics and Manufacturing

  • 9.1. Overview
  • 9.2. Experiment Material and Method
    • 9.2.1. Cell Design
    • 9.2.2. Cell Properties
    • 9.2.3. Cell Energy Density
    • 9.2.4. Cell Impedance
    • 9.2.5. Cell Temperature
  • 9.3. Experiment Result and Consideration
    • 9.3.1. Cylindrical LIB Cell Design
    • 9.3.2. Jelly Roll Design
      • 9.3.2.1. Geometry
    • 9.3.3. Tab Design
    • 9.3.4. Cell Properties
      • 9.3.4.1. Cell Energy Density
      • 9.3.4.2. Cell Resistance
      • 9.3.4.3. Cell Thermal Behavior
    • 9.3.5. Jelly Roll Manufacturing
  • 9.4. Experiment Conclusion

10. Cell size and Housing Material and their Influences of Tabless Cylindrical LIB Cell

  • 10.1. Overall Overview
  • 10.2. Experiment
    • 10.2.1. Reference cell
    • 10.2.2. Cell Modeling
      • 10.2.2.1. Cell Size and Geometric Model
      • 10.2.2.2. Jelly Roll Electrode Layer
      • 10.2.2.3. Hollow core
      • 10.2.2.4. Tabless Design
    • 10.2.3. Cell Housing
    • 10.2.4. Thermal - Electrical - Electrochemical Framework
      • 10.2.4.1. Boundary Conditions and Discretization
  • 10.3. Experiment Result and Discussion
    • 10.3.1. Energy Density
      • 10.3.1.1. Influence of Cell Diameter
      • 10.3.1.2. Influence of Cell Height
      • 10.3.1.3. Influence of Housing Material
    • 10.3.2. Fast Charging Performance
      • 10.3.2.1. Realization of Heat Transfer Coefficient Control Algorithm
      • 10.3.2.2. Influence of Cell Height and Housing Material with Axial Cooling
      • 10.3.2.3. Influence of Cell Diameter and Housing Material with Axial Cooling
      • 10.3.2.4. Influence of Tab Design and Scaling of Series Resistance
      • 10.3.2.5. Influence of Cell Size and Housing Material on Fast Charging
  • 10.4. Experiment Conclusion

11. 4680 Cell Maker and Car OEMs Current Status

  • 11.1. Tesla
  • 11.2. Panasonic
  • 11.3. LGES
  • 11.4. SDI
  • 11.5. EVE
  • 11.6. BAK
  • 11.7. CATL
  • 11.8. Guoxuan Hi-TECH
  • 11.9. SVOLT
  • 11.10. CALB
  • 11.11. Envision AESC
  • 11.12. LISHEN
  • 11.13. Easpring
  • 11.14. Kumyang
  • 11.15. BMW
  • 11.16. Rimac

12. Tesla 4680 Battery Patent Analysis

  • 12.1. Tabless Electrode Battery (PTC/US2019/059691)
  • 12.2. Tabless Energy Storage Devices and their Manufacturing Methods (PTC/US2021/050992)
  • 12.3. Dry Process Patent 1(Inclusion of particulate nonfibrification binder: US11545666 B2)
  • 12.4. Dry Process Patent 2 (Compositions and methods for passivation of electrode binders: US11545667 B2)

13. 4680 Battery Market Outlook

  • 13.1. Overall Market Outlook
  • 13.2. 4680 Major Materials Market Outlook
    • 13.2.1. Si-based Anode
    • 13.2.2. Hi-Ni Ternary Cathode
    • 13.2.3. LiFSI
    • 13.2.4. Composite Copper Foil
    • 13.2.5. PVDF Binder
    • 13.2.6. CNT Conductor
    • 13.2.7. Laser Welding Equipment
    • 13.2.8. Housing CAN
    • 13.2.9. Ni plated CAN
  • 13.3. 4680 Demand Outlook and Capacity Outlook

14. Tesla 4680 Cell Production Outlook

  • 14.1. 4680 Outlook by Consulting Company
  • 14.2. Tesla/BMW 4680 Demand Outlook
  • 14.3. Tesla 4680 Cell for Cybertruck Production Outlook
    • 14.3.1. 4680 Giga Texas Production Estimates
    • 14.3.2. 4680 Cell Production Capacity vs. Cybertruck Production Volume (Units)
    • 14.3.3. 4680 Cell Annual Capacity vs. Daily Production Volume
    • 14.3.4. 4680 Cell Production Capacity vs. Production Time Change Trend
    • 14.3.5. Tesla Giga Factory P/P Line Major Processes