全球LFP电池的技术趋势与市场预测
市场调查报告书
商品编码
1581324

全球LFP电池的技术趋势与市场预测

<2024> Global LFP Battery Technology Trend and Market Outlook

出版日期: | 出版商: SNE Research | 英文 200 Pages | 商品交期: 请询问到货日

价格
简介目录

近年来,磷酸铁锂 (LFP) 电池在电动车 (EV) 市场,尤其是中国,表现出惊人的发展势头。磷酸铁锂电池正迅速成为电动车电池创新的核心,包括特斯拉在内的全球汽车製造商对其的兴趣日益浓厚。

为什么磷酸锂电池正在兴起

  • 成本竞争力:磷酸铁锂电池不使用昂贵的钴,可大幅降低生产成本。近期原物料价格的上涨,进一步凸显了磷酸铁锂电池的成本优势。
  • 安全:磷酸铁锂电池即使在高温和过度充电的情况下也能保持稳定的性能,大大降低火灾风险。
  • 使用寿命长:更长的生命週期意味着电池更换间隔时间更长,从而提供更大的价值。
  • 专利到期:主要专利到期,不再需要许可费,进一步降低製造成本。

LFP电池的优点和缺点

优点 缺点
低的生产成本 因为能量密度低有续航距离变得短的可能性
高(贵)的安全性 低功率高性能EV有适sa没有的可能性
长的寿命 在寒冷地区的性能降低
工厂的自由度

LFP电池的今后的发展

  • 能量密度的提高:锰LMFP电池的研究前进,能量密度提高。
  • 为了输出的提高:急速充电和对应高功率的技术创新被要求。
  • 为了发挥低温性能的提高:寒冷地区也稳定了的性能的改良被发展。

市场展望

考虑到成本效率和安全性,磷酸铁锂电池预计将扩大其在电动车市场的作用,特别是在低成本汽车和商用车领域。这一趋势显示磷酸铁锂电池的采用是有前景的。

结论

磷酸铁锂电池正快速崛起,成为大规模采用电动车的基础技术。具有成本效益、安全且长寿命的磷酸铁锂电池预计将继续发展,并不断开发以解决其限制。

本报告研究和分析了全球磷酸铁锂电池市场,提供製造技术、市场规模和成长预测、主要製造商概况和应用等资讯。

目录

第1章 LFP市场预测

  • 全球EV市场预测
  • 全球xEV电池市场预测
  • 电池市场预测:各xEV类型
  • LFP电池市场预测:各地区
    • 中国
    • 欧洲
    • 北美
    • 其他
  • 全球LFP电池需求预测:各OEM
    • TESLA
    • VW
    • HKMC
    • TOYOTA
    • Renault-Nissan
    • Stellantis
    • GM
    • Ford
    • BMW
    • Mercedes-Benz
    • Geely
  • ESS·LFP电池市场预测
    • 全球ESS市场预测
    • 全球ESS电池市场预测
  • 面向EV/ESSLFP电池的市场预测

第2章 LFP的SCM的分析

  • 全球LFP正极材料的供需分析
    • 北美的LFP正极材料的供需分析
  • LFP正极材料的价格的预测
  • LFP电池製造商供应链分析
    • 电池製造商与正极製造商之间的合作状况(2023年)
    • 电池製造商与正极製造商之间的合作状况(2024年)
  • 中国的锂电池价值链趋势
  • LFP正极材料製造商现状
    • Dynanonic
    • Guoxuan Hightech
    • LBM (Lopal technology)
    • Hunan Yuneng
    • Hubei Wanrun
    • BYD
    • Xiamen Tungsten (XTC)

第3章 LFP和NCM的成本分析

  • 中国的LFP成本趋势
  • 中国的NCM(523)成本趋势
  • 韩国的NCM(523)成本趋势
  • 中国的LFP和韩国的NCM523成本的比较
  • LFP和NCM523电池单元的成本结构的比较

第4章 与韩国的电池製造商LFP线的扩张生产预测

  • LGES
  • SDI
  • SK On

第5章 LFP生产预测:韩国的正极各製造厂商

  • Ecopro BM,L&F,Posco Future M,LGC

第6章 LFP电池的检讨

  • LFP正极材料的基本特性
  • LMFP正极材料的基本特性
  • LFP的导电性情上的相关调查结果
  • LFP/LMFP结构,电化学特性和安全性
    • LFP/LMFP结构,电化学性质
    • LFP/LMFP的热安全性
  • LFP相关专利纠纷概要
  • LFP和NCM的优点与缺点的比较
  • 巴士相关法的影响
  • LFP的应用案例
    • 电力巴士
    • 电力船
    • ESS
    • UPS
  • LFP电池(CTP)的设计和模组的标准化
    • 最适合的LFP电池组设计趋势
    • LFP电池组的价格资讯

第7章 LFP电池的製造流程

  • 二次锂电池的开发趋势
    • LFP製造趋势
    • 磷酸前驱体製造流程:合成法
    • LFP的有代表性的量产方法
    • 前驱体製造流程:固体法
    • 前驱体製造流程:共沉淀法
    • 前驱体製造流程:液体共沉淀法
    • 草酸铁法(固体)
    • 磷酸法(固体)收穫率法
    • LFP製造预测
    • 氧化铁法(固体)
    • 水热合成法(液体)
    • LFP製造设施

第8章 LFP电池的专利

  • 固体反应
    • LG Chem
  • 前驱体法
    • Korea Research Institute of Chemical Technology
    • Korea National University of Transportation
    • Korea Research Institute of Chemical Technology
  • 冷冻干燥
    • Hyundai Motor
  • 球磨机
    • Korea Polytechnic University
  • 导电性聚合物种子披衣
    • Ajou University
  • Fe(NO3)3法
    • Korea National University of Transportation
简介目录
Product Code: 241

In recent years, Lithium Iron Phosphate (LFP) batteries have gained remarkable momentum in the electric vehicle (EV) market, especially with significant uptake in China. With global automakers, including Tesla, showing increasing interest in LFP batteries, they are quickly becoming a central focus in EV battery innovation.

Why LFP Batteries Are Rising

  • Cost Competitiveness: LFP batteries omit costly cobalt, reducing production costs significantly. Recent raw material price hikes have further highlighted their cost advantage.
  • Safety: LFP batteries maintain stable performance at high temperatures and during overcharging, significantly lowering the risk of fires.
  • Longevity: Their long life cycle extends battery replacement intervals, offering greater value.
  • Patent Expiration: With key patents expiring, production costs are further reduced due to the lack of licensing fees.

Advantages and Drawbacks of LFP Batteries

AdvantagesDrawbacks
Low production costLow energy density may reduce range
High safetyLower output might not suit high-performance EVs
Long lifespanReduced performance in colder conditions
Plant freedom 

Future Development of LFP Batteries

  • Energy Density Improvement: Research on manganese-infused LMFP batteries is advancing to improve energy density.
  • Enhanced Output: Innovations are needed to support fast charging and high power output.
  • Improved Low-Temperature Performance: Enhancements to ensure stable performance in colder climates are underway.

Market Outlook

Given their cost efficiency and safety, LFP batteries are poised for a growing role in the EV market, especially in budget-friendly and commercial vehicle segments. This trend suggests a promising trajectory for LFP battery adoption.

Conclusion

LFP batteries are rapidly emerging as a cornerstone technology for EV mass adoption. With their cost efficiency, safety, and longevity, LFP batteries are expected to continue advancing as ongoing development efforts address their limitations.

In-Depth Analysis Topics Covered:

  • Electrochemical background of LFP batteries
  • LFP battery manufacturing process technology
  • Market size and growth projections
  • Profiles of leading LFP battery manufacturers
  • Overview of LFP battery applications

Key Strengths of This Report:

  • 1. Technical Expertise: Provides an in-depth explanation of lithium iron phosphate and other lithium-ion cathode materials to enhance understanding of battery technology.
  • 2. Material Comparison Analysis: Compares LFP materials with NMC materials, clearly highlighting each material's strengths and weaknesses.
  • 3. Latest Technology Trends: Summarizes LFP manufacturing advancements and current technological developments, helping track industry shifts and future outlook.
  • 4. Company Production Capabilities and Forecasts: Offers insights into production capacities of key players and future market outlook, aiding in competitive analysis and strategic planning.
  • 5. Practical Insights: Equips companies and individuals entering the LFP market or initiating related research with essential information to identify business opportunities and guide R&D directions.

We believe this report will be a valuable resource for stakeholders in the EV industry.

Table of Contents

1. LFP Market Outlook

  • 1.1. Global EV Market Outlook
  • 1.2. Global xEV Battery Market Outlook
  • 1.3. Battery Market Outlook by xEV Type
  • 1.4. LFP Battery Market Outlook by Region
    • 1.4.1. China
    • 1.4.2. Europe
    • 1.4.3. North America
    • 1.4.4. Others
  • 1.5. LFP Battery Demand Outlook by Global OEM
    • 1.5.1. TESLA
    • 1.5.2. VW
    • 1.5.3. HKMC
    • 1.5.4. TOYOTA
    • 1.5.5. Renault-Nissan
    • 1.5.6. Stellantis
    • 1.5.7. GM
    • 1.5.8. Ford
    • 1.5.9. BMW
    • 1.5.10. Mercedes-Benz
    • 1.5.11. Geely
  • 1.6. ESS and LFP Battery Market Outlook
    • 1.6.1. Global ESS Market Outlook
    • 1.6.2. Global ESS Battery Market Outlook
  • 1.7. Market Outlook of LFP Battery for EV/ESS

2. LFP SCM Analysis

  • 2.1. Global LFP Cathode Material Supply and Demand Analysis
    • 2.1.1. North American LFP Cathode Material Supply and Demand Analysis
  • 2.2. LFP Cathode Material Price Forecast
  • 2.3. LFP Battery Maker Supply Chain Analysis
    • 2.3.1. 2023 Battery Maker-Cathode Maker Collaboration Status
    • 2.3.2. 2024 Battery Maker-Cathode Maker Collaboration Status
  • 2.4. Trends in China's Lithium Battery Value Chain
  • 2.5. Status of LFP Cathode Material Manufacturers
    • 2.5.1. Dynanonic
    • 2.5.2. Guoxuan Hightech
    • 2.5.3. LBM (Lopal technology)
    • 2.5.4. Hunan Yuneng
    • 2.5.5. Hubei Wanrun
    • 2.5.6. BYD
    • 2.5.7. Xiamen Tungsten(XTC)

3. LFP vs NCM Cost Analysis

  • 3.1. China LFP Cost Trend
  • 3.2. China NCM(523) Cost Trend
  • 3.3. Korea NCM(523) Cost Trend
  • 3.4. Comparison of China LFP& Korea NCM523 Cost
  • 3.5. Comparison of LFP & NCM523 Cell Cost Structure

4. Expansion and Production Outlook of LFP Lines by Korean Battery Makers

  • 4.1. LGES
  • 4.2. SDI
  • 4.3. SK On

5. Production Outlook of LFP by Korean Cathode Makers

  • Ecopro BM, L&F, Posco Future M, LGC

6. LFP Battery Review

  • 6.1. Basic Properties of LFP Cathode Materials
  • 6.2. Basic Properties of LMFP Cathode Materials
  • 6.3. Research Footprint on Improving Electrical Conductivity of LFP
  • 6.4. Structure, Electrochemical Properties and Safety of LFP/LMFP
    • 6.4.1. Structure, Electrochemical Properties of LFP/LMFP
    • 6.4.2. Thermal Safety of LFP/LMFP
  • 6.5. Summary of Patent Disputes on LFP
  • 6.6. Comparison of Advantages and Disadvantages of LFP and NCM
  • 6.7. Impact of Bus-Related Legislation
  • 6.8. LFP Application Cases
    • 6.8.1. Electric Buses
    • 6.8.2. Electric Ships
    • 6.8.3. ESS
    • 6.8.4. UPS
  • 6.9. Design of LFP Battery (CTP) and Module Standardization
    • 6.9.1. Trends in Optimal LFP Battery Pack Design
    • 6.9.2. LFP Battery Pack Price Information

7. LFP Battery Manufacturing Process

  • 7.1. Development Trends in Lithium-Ion Secondary Batteries
    • 7.1.1. LFP Manufacture Trend
    • 7.1.2. Phosphate Precursor Production Process: Synthesis Method
    • 7.1.3. Representative Mass Production Method for LFP
    • 7.1.4. Precursor Production Process: Solid-State Method
    • 7.1.5. Precursor Production Process: Co-precipitation Method
    • 7.1.6. Precursor Production Process: Liquid Co-precipitation Method
    • 7.1.7. Oxalate Iron Method (Solid-State)
    • 7.1.8. Phosphate Method (Solid-State) Yield Method
    • 7.1.9. LFP Manufacture Outlook
    • 7.1.10 Ferric Oxide Method (Solid-State)
    • 7.1.11 Hydrothermal Synthesis Method (Liquid)
    • 7.1.12 LFP Manufacture facilities

8. LFP battery Patents

  • 8.1. Solid-State Reaction
    • 8.1.1. LG Chem
  • 8.2. Precursor Method
    • 8.2.1. Korea Research Institute of Chemical Technology
    • 8.2.2. Korea National University of Transportation
    • 8.2.3. Korea Research Institute of Chemical Technology
  • 8.3. Freeze drying
    • 8.3.1. Hyundai Motor
  • 8.4. Ball Milling
    • 8.4.1. Korea Polytechnic University
  • 8.5. Conductive Polymer Coating Method
    • 8.5.1. Ajou University
  • 8.6. Fe(NO3)3 Method
    • 8.6.1. Korea National University of Transportation