4680电池技术的开发趋势与预测(2025年)
市场调查报告书
商品编码
1784309

4680电池技术的开发趋势与预测(2025年)

<2025> 4680 Battery Technology Development Trend and Outlook

出版日期: | 出版商: SNE Research | 英文 494 Pages | 商品交期: 请询问到货日

价格
简介目录

4680电池是一种大尺寸圆柱形锂离子电芯,直径46毫米,长度80毫米。自2020年特斯拉电池日首次亮相以来,它已成为一种标誌性的电芯形态,引领着全球电池和电动车产业的技术创新。与现有的2170/1865规格相比,4680电池具有许多优势,包括更高的能量密度、更少的电芯数量、更佳的热管理效率以及更低的成本。

因此,不仅特斯拉,松下、LG Energy Solution、三星SDI、宁德时代和EVE Energy等主要电芯製造商也在竞相争夺4,680电池的产能。

4680电池特别融合了许多创新技术,例如电芯到底盘(CtC)设计,该设计可提高电动车平台的结构效率;以及无极电极结构,可实现更高的充放电性能。这些进步使4680电池成为大幅提升电动车效率和成本竞争力的关键技术。

4680电池最显着的特征是无极电极结构,将集流极耳分布在整个电极上,而不是将其布置在电芯边缘。这使得电流更均匀,电阻分布减少,发热得到抑制,散热效果更好,从而防止高功率条件下的局部过热。此外,它简化了製造工艺,无需电极片连接,提高了良率。虽然这种架构在软包或方形电池中难以实现,但在圆柱形电池(尤其是大型电池)中,其优势得到了最大化。特斯拉的自有电池积极地将这种结构与干电极涂层技术结合使用。

同时,特斯拉尝试将其透过收购Maxwell Technologies获得的干电极涂层技术应用于4680。这种方法使用高速压机将固体电极材料黏合到集流体上,无需使用溶剂,是一种环保(不含NMP)的製程。无需干燥工序,缩短了生产时间,从而可以生产更厚更緻密的电极,从而提高能量密度。然而,大规模生产仍然存在课题,例如均匀的涂层厚度和稳定的界面结合力。因此,一些公司正在开发基于湿式製程的替代高速涂层解决方案。

为了最大限度地提高能量密度,高能量活性材料正在被广泛应用。正极材料采用高镍(镍含量超过 88%)NCM/NCA,以提高密度和使用寿命。负极材料采用硅石墨复合材料 (Si-C) 或全硅基设计,以增强快速充电能力。电解质采用高压稳定添加剂或凝胶电解质,以提高耐久性和稳定性。硅负极尤其面临膨胀控制和导电性的课题,这些问题透过奈米复合材料技术、碳基质结构和界面稳定添加剂来解决。

随着容量的增加,热失控和安全措施也变得至关重要。由于 4680 拥有大型电池,单一电池故障可能迅速蔓延至整个模组。因此,正在开发诸如热障、内建 PTC/热熔断器、阻燃电池外壳和分散式冷却路径等安全技术。由于结构分析比软包或方形电池更复杂,基于模拟的结构、热和电气一体化设计正在不断扩展。

特斯拉率先提出了这个概念,目前韩国、日本和中国正在开发46Phi大型电池。特斯拉正在德州超级工厂和柏林工厂量产4,680型电池,预计到2024年产量将超过1亿块。该公司计划将第二代Cyber​​cell应用于Cyber​​truck,以提高充电速度和性能,并在2026年前开发至少四款新车型,包括基于干法涂层的NC05。松下正在其位于日本和歌山县和美国内华达州的工厂进行试生产和供货,并已完成位于堪萨斯州的大型4680工厂的翻新。此外,该公司也正在向特斯拉以外的OEM厂商提供样品和批准。



本报告调查并分析了全球4,680个市场,提供了发展趋势、电池和电池组细分报告的详细分析、市场规模和产量预测以及材料和技术的回顾。

目录

第1章 4680日元筒形电池概要

  • 特斯拉电池日(2020 年 9 月 22 日)总结及主要发现
  • 电池单元设计
  • 电池单元製造工艺
  • 硅负极材料
  • 高镍正极材料
  • 电池到车辆整合
  • 降低电池成本
  • 4680 电池开发
  • 全球 46xx 电池产能

第2章 4680电池电池单元的开发

  • 降低成本、提高效率的策略
  • 加强安全要求(热管理升级)
  • 快速充电作为未来趋势:4680 的快充优势
  • 各大厂商市场竞争力
  • 46xx 电池详细规格:依厂商

第3章 4680电池的技术细节

  • 正极材料
  • 负极材料
  • 其他的电池材料
  • 4680製造流程的改良

第4章 4680电池的分解与分析

  • 概述
  • 拆解与分析流程
  • 特斯拉 4680 电芯和电池组的详细工程分析

第5章 特斯拉 4680 电池拆解与电化学研究电芯

  • 总结
  • 研究概述
  • 前期研究
  • 详细分析
  • 实验
  • 结果与讨论
  • 结论

第6章 4680电池的成功所需的技术

  • 多极耳技术
  • 极耳焊接技术
  • 正极和负极材料
  • 冷却技术

第7章 4680和18650·2170比较:能量密度和降低成本

  • 概要
  • 4680:能量密度、快速充电与成本降低
  • 高浓度电解液的使用
  • 主要的4680电解液供应商

第8章 特斯拉 4680 模组电池热管理系统 (BTMS) 设计

  • 引言
  • 电动车电池对 BTMS 的需求
  • 冷却方法
  • 文献综述
  • 4680 模组液冷 + 热管:方法、结果与结论
  • 拟定冷却系统的热分析
  • 结果与讨论
  • 结论

第9章 4680 电芯热管理:设计与冷却

  • 总结
  • 引言
  • 实验
  • 仿真模型
  • 仿真结果
  • 结论

第10章 圆筒型LIB电池单元的设计,特性,製造

  • 概要
  • 实验材料与方法
  • 实验结果与考察
  • 结论

第11章 电池尺寸与外壳材料对无平台圆柱形锂离子电池的影响

  • 总结
  • 实验
  • 结果与讨论
  • 结论

第12章 大型圆柱形锂离子电池的热失控与热传播

  • TR 和 TP 特性研究
  • 引言:新设计的必要性
  • 实验

第13章 比较分析:特斯拉 4680 与比亚迪 Blade电池

  • 引言
  • 结果与讨论

第14章 建模研究:电池尺寸与封装对无电极圆柱形锂离子电池的影响

  • 引言
  • 製程分析
  • 建模
  • 结果与讨论
  • 结论

第15章 成本比较:电极圆柱形锂离子电池与标准电极圆柱形锂离子电池

  • 总结:特斯拉无电极圆柱形锂离子电池设计
  • 引言
  • 方法
  • 结果
  • 结论

第16章 4680电池单元製造商情形

  • Tesla
  • Panasonic
  • LGES
  • Samsung SDI
  • SK On
  • EVE
  • BAK
  • CATL
  • Gotion Hi-TECH
  • SVOLT
  • CALB
  • Envision AESC
  • LISHEN
  • Easpring (Dangsheng Technology)
  • Kumyang
  • BMW
  • Dongwon Systems
  • Sungwoo
  • TCC Steel
  • Dongkuk Industries
  • Shinheung SEC
  • Sangsin EDP
  • LT Precision
  • NIO

第17章 4680电池的专利分析

  • 无电极电池
  • 特斯拉:无电极储能装置及製造方法
  • 特斯拉干电极製程专利(1):颗粒状非纤维黏合剂
  • 特斯拉干电极製程专利(2):干电极用黏合钝化膜组合物
  • LG Energy Solution:无极板相关专利(电极组件、电池、电池组、车辆)
  • 村田:无极板电池
  • 江苏中能电池
  • 亿纬锂能(极耳平坦化装置)
  • 微宏科技(极耳板和绕线电池)

第18章 4680电池的市场预测

  • 整体市场展望
  • 4680材料与製程技术预测
  • 化学工业:硅碳负极、PTFE、LiFSI等材料
  • 4680政策、需求与CAPA预测

第19章 Tesla的4680电池单元生产预测

  • GIGA TEXAS 产量预估
  • 特斯拉 4680 电池生产时程与关键里程碑
  • 特斯拉 4680 电池最新进展
  • Tesla的4680电池电池单元的成本结构
  • 效率改良和降低成本的要素
  • Tesla的4680电池单元开发的现状
  • 特斯拉 4680 电池单元成本结构
  • 提升效率与降低成本的因素
  • 特斯拉 4680 电池单元开发现况
  • 特斯拉 4680 和超级充电网路的最新进展
  • 特斯拉电池製造和锂精炼业务概要
  • 4680 电池单元产能 vs. Cyber​​truck 产量
  • 4680 年度 CAPA vs. 日产量
  • 4680 CAPA vs. 生产时间趋势
  • 特斯拉超级工厂 P/P 生产线的主要组装工序
简介目录
Product Code: 261

The 4680 battery is a large cylindrical lithium-ion cell with a diameter of 46 mm and a length of 80 mm. Since Tesla first unveiled it at its 2020 Battery Day, it has emerged as a symbolic cell form factor leading technological innovation across the global battery and electric vehicle industries. Compared to the existing 2170 and 1865 formats, the 4680 highlights multidimensional advantages such as higher energy density, reduced cell assembly count, improved thermal management efficiency, and lower costs.

Accordingly, not only Tesla but also major cell manufacturers including Panasonic, LG Energy Solution, Samsung SDI, CATL, and EVE Energy are racing to secure 4680 production capacity.

The 4680 battery particularly enables enhanced structural efficiency of EV platforms through Cell-to-Chassis (CtC) design and incorporates innovations such as the tabless electrode structure, which makes it possible to achieve high charge/discharge performance. These advances position the 4680 as a key technology that can drastically improve EV efficiency and cost competitiveness.

The most distinctive feature of the 4680, the tabless electrode structure, distributes the current-collecting tabs across the entire electrode instead of placing them at the cell's edges. This leads to more uniform current flow, reducing resistance distribution, suppressing heat generation, and improving thermal diffusion efficiency, thereby preventing localized overheating under high-power conditions. Additionally, the simplified manufacturing process eliminates the need for electrode-tab connection steps, boosting yield. While this architecture is difficult to implement in pouch or prismatic cells, in cylindrical cells-especially large ones-its advantages are maximized. Tesla's in-house cells actively leverage this structure along with dry electrode coating.

Meanwhile, Tesla sought to apply the dry electrode coating technology introduced via its acquisition of Maxwell Technologies to the 4680. This method, which attaches solid electrode materials to the current collector by high-speed pressing without using solvents, is an environmentally friendly (NMP-free) process. It shortens production time by eliminating drying, allows thicker and denser electrodes, and thereby improves energy density. However, challenges remain in mass production, such as ensuring coating thickness uniformity and interfacial adhesion stability. Some companies are therefore developing alternative high-speed coating solutions based on wet processes.

To maximize energy density, high-energy active materials are being applied: cathodes employ high-nickel (Ni > 88%) NCM/NCA to enhance both density and lifespan; anodes use silicon-composite graphite (Si-C) or fully silicon-based designs to boost fast-charging capability; electrolytes incorporate high-voltage stabilizing additives or gel electrolytes to improve durability and stability. In particular, silicon anodes face expansion control and conductivity challenges, tackled by nanocomposite technologies, carbon-matrix architectures, and interfacial stabilization additives.

As capacity increases, so does the need for thermal runaway and safety countermeasures. Due to the large-cell nature of the 4680, a single-cell failure can quickly cascade across the module. Accordingly, safety technologies such as thermal barriers, built-in PTC/thermal fuses, flame-retardant cell casings, and dispersed cooling pathways are being developed. Since structural analysis becomes more complex than in pouch or prismatic cells, simulation-based integrated structural-thermal-electrical design is expanding.

Although Tesla pioneered the concept, development of 46-Phi large-format cells is now actively underway in Korea, Japan, and China. Tesla is mass-producing 4680 cells at its Texas Gigafactory and Berlin plant, surpassing 100 million units in 2024. The company has applied the second-generation "Cybercell" to the Cybertruck to improve charging speed and performance, and by 2026 plans to develop at least four new variants-including the NC05-based on dry coating. Panasonic is conducting pilot production and supply from its Wakayama (Japan) and Nevada (U.S.) facilities, and has completed renovations for a large 4680 plant in Kansas. It is also undergoing sampling and approval processes with OEMs beyond Tesla.

Among Korean "K-3" companies: LG Energy Solution began pilot production at Ochang in August 2024 and is preparing for mass production at its new Arizona plant by the first half of 2026. Samsung SDI, starting in Q1 2025, will apply 46-Phi cells in micromobility packs and expand adoption with European OEMs such as BMW. Meanwhile, Chinese companies including CATL and EVE are testing 46-series cells for structural compatibility, while BYD is developing similar large cells based on LFP chemistry.

Ultimately, while the 4680 holds strong potential in terms of high capacity, high density, and cost reduction, the keys remain mass-production stabilization and technological maturity. The period between 2025 and 2026 is expected to be a watershed, as Tesla and Panasonic accumulate production experience while Korean firms build out full-scale supply systems.

Competition, however, is diversifying. Rivalry with other battery technologies such as LFP, the completion of dry processes, yield improvements, and levels of localization will shape the industry landscape. For the 4680 to truly establish itself as a game-changer in the EV market, the trifecta of technical completeness, cost competitiveness, and supply chain stability must be achieved.

This report by SNE systematically compiles scattered data from corporate announcements, teardown studies, and performance tests related to the 4680. It also reviews key academic papers to assess the actual effectiveness and performance improvements of the 4680, summarizes the status and main products of manufacturers, and presents correlations between Gigafactory scale, Cybertruck production volumes, and cell output-providing valuable insights on manufacturability for researchers and stakeholders.

The strong points of this report are as follows:

  • 1. Comprehensive consolidation of development trends and information on the 4680, enabling easy overall understanding
  • 2. Detailed analysis of 4680 cell and pack teardown reports, enhancing comprehension
  • 3. Market and production outlook analysis for the 4680, clarifying market size and growth rates
  • 4. In-depth review of materials and technologies applied in the 4680, based on academic papers



(a)(c) The total cost is classified into material costs, labor costs, depreciation, capital costs, energy costs, plant area costs, and other expenses, with their respective proportions shown. Material cost accounts for the largest share (72.0%).

(b)(d) Detailed material cost analysis of 2170 cells vs. 4680 cells. This donut chart breaks down material costs into anode, cathode, separator, electrolyte, and housing. It clearly shows that cathode and anode materials are the main cost drivers.

Manufacturing process of large tabless cylindrical lithium-ion cells (including can and end cap).

This figure visually illustrates the key steps of cell manufacturing:

  • Top left: Tabless jelly-roll fabrication (A1) - shows how the jelly roll is formed together with the current collector plate. Laser welding is indicated.
  • Top right: Can deep drawing (steel) or impact extrusion (aluminum) (A2) - illustrates the process of forming the housing.
  • Center: Cell assembly (B) - the jelly roll is inserted into the housing and assembled through various welding processes. Laser and ultrasonic welding are indicated.
  • Bottom: Finishing (C) - the fully assembled cell undergoes final inspection and treatment.

Table of Contents

1. Overview of 4680 Cylindrical Battery

  • 1.1. Summary and Key Findings of Tesla Battery Day (Sep 22, 2020)
  • 1.2. Battery Cell Design
  • 1.3. Battery Cell Manufacturing Process
    • 1.3.1. Coating Process
    • 1.3.2. Winding Process
    • 1.3.3. Assembly Process
    • 1.3.4. Formation Process
  • 1.4. Silicon Anode Material
  • 1.5. High-Nickel Cathode Material
  • 1.6. Cell-to-Vehicle Integration
  • 1.7. Battery Cost Reduction
  • 1.8. 4680 Battery Development
    • 1.8.1. Specifications of 4680 Battery
    • 1.8.2. Tesla Battery Suppliers
    • 1.8.3. Global Development and Production Status of 4680 Batteries
  • 1.9. Global 46xx Battery Production Capacity
    • 1.9.1. Advantages and Disadvantages of New 46xx Cell Design

2. Development of 4680 Battery Cells

  • 2.1. Cost Reduction and Efficiency Enhancement Strategy
  • 2.2. Increasing Safety Requirements (Thermal Management Upgrade)
  • 2.3. Fast Charging as a Future Trend: Advantages of 4680's High Charging Speed
  • 2.4. Market Entry Competition Among Leading Companies
  • 2.5. Detailed Specifications of 46xx Batteries by Company

3. Detailed Technology of 4680 Battery

  • 3.1. Cathode Materials
    • 3.1.1. Ultra High-Nickel Application
    • 3.1.2. Production Capacity Expansion
    • 3.1.3. Manufacturing Technology Upgrade
  • 3.2. Anode Materials
    • 3.2.1. Silicon-Based Development
    • 3.2.2. Silicon Development Timeline
    • 3.2.3. Silicon Anode Modifications: Nanostructuring, Carbon Composites, Pre-lithiation
    • 3.2.4. Commercialization Acceleration of Silicon Anode
  • 3.3. Other Battery Materials
    • 3.3.1. SWCNT Conductive Additives
    • 3.3.2. Steel Battery Can
    • 3.3.3. Aluminum Battery Can
      • 3.3.3.1. Al Housing Cell Design Concept
      • 3.3.3.2. 46xx Large Cylindrical Cell
      • 3.3.3.3. 46xx Jelly Roll Concept
      • 3.3.3.4. Jelly Roll Thermal Transfer and Distribution
      • 3.3.3.5. Thermal Simulation of Jelly Roll Concept
      • 3.3.3.6. Cooling Performance Enhancement for 46xx Cells
  • 3.4. Improvements in 4680 Manufacturing Process
    • 3.4.1. Process Technologies for 4680
    • 3.4.2. Differentiation in Production Process
      • 3.4.2.1. Dry Electrode Coating
      • 3.4.2.2. Example Dry Process (Huaqi New Energy)
      • 3.4.2.3. Integrated Electrode and Tab Cutting
      • 3.4.2.4. Increased Laser Welding Difficulty
      • 3.4.2.5. Integrated Die Casting and CTC

4. 4680 Battery Teardown and Analysis

  • 4.1. Overview
  • 4.2. Teardown and Analytical Process
  • 4.3. Detailed Engineering Analysis of Tesla 4680 Cells and Packs
    • 4.3.1. Tesla 4680 Cell Design Data (w/o Tab)
    • 4.3.2. Pack Structure (Cell Orientation)
    • 4.3.3. Proposed Assembly Methods for 4680 Pack
    • 4.3.4. Analysis of 4680 Pack for Model 3: Expected Charge Time, Power, and Dimensions
      • 4.3.4.1. Summary of Pack Analysis
      • 4.3.4.2. Thermal Dissipation Discussion
    • 4.3.5. Current Collector for Model 3 Battery

5. Teardown and Electrochemical Study of Tesla 4680 Cell

  • 5.1. Summary
  • 5.2. Study Overview
  • 5.3. Previous Research
  • 5.4. Detailed Analysis
  • 5.5. Experiments
    • 5.5.1. Overview of Test Cell
    • 5.5.2. Cell Disassembly and Material Extraction
    • 5.5.3. Structural and Elemental Analysis
    • 5.5.4. Three-Electrode Analysis
    • 5.5.5. Electrical Characteristics
    • 5.5.6. Thermal Investigation
  • 5.6. Results & Discussion
    • 5.6.1. Cell and Jelly Roll Structure
    • 5.6.2. Electrode Design
    • 5.6.3. Material Properties
    • 5.6.4. Three-Electrode Analysis
    • 5.6.5. Capacity and Impedance Analysis
    • 5.6.6. Quasi-OCV, DVA and ICA
    • 5.6.7. HPPC (Hybrid Pulse Power Characterization)
    • 5.6.8. Thermal Characterization at Cell Level
  • 5.7. Conclusion

6. Technologies Required for 4680 Battery Success

  • 6.1. Multi-Tab Technology
  • 6.2. Tab Welding Technology
  • 6.3. Cathode & Anode Materials
  • 6.4. Cooling Technology

7. Comparison of 4680 with 18650 & 2170: Energy Density and Cost Reduction

  • 7.1. Overview
  • 7.2. 4680: Energy Density, Fast Charging, and Cost Reduction
    • 7.2.1. Energy Density vs. Blade & Prismatic Hi-Ni Batteries
    • 7.2.2. Improvement in Fast Charging Speed
    • 7.2.3. Dry Electrode: Production Standardization and Cost Down
  • 7.3. Use of High-Concentration Electrolyte
    • 7.3.1. Electrolyte Reduction per GWh
    • 7.3.2. High-Concentration Electrolyte with LiFSI Additive
    • 7.3.3. Fluorinated Solvent (FEC): Performance Boost in NCM811/SiOx
  • 7.4. Major Electrolyte Companies for 4680

8. Design of Battery Thermal Management System (BTMS) for Tesla 4680 Module

  • 8.1. Introduction
  • 8.2. Need for BTMS in EV Batteries
  • 8.3. Cooling Methods
  • 8.4. Literature Review
  • 8.5. Liquid Cooling + Heat Pipe for 4680 Module: Method, Results, Conclusion
  • 8.6. Thermal Analysis of Proposed Cooling System
  • 8.7. Results & Discussion
  • 8.8. Conclusion

9. Thermal Management of 4680 Cells: Design and Cooling

  • 9.1. Overview
  • 9.2. Introduction
    • 9.2.1. Previous Research
    • 9.2.2. Contributions of This Study
  • 9.3. Experimental
    • 9.3.1. Reference Cell
    • 9.3.2. Thermal Battery Test Bench
    • 9.3.3. Test Procedure
  • 9.4. Simulation Model
    • 9.4.1. Housing & Cooler
    • 9.4.2. Jelly Roll
    • 9.4.3. Cathode and Anode Tabs
    • 9.4.4. Model Calibration and Validation
  • 9.5. Simulation Results
    • 9.5.1. Impact of Tab Design
    • 9.5.2. Impact of Housing Materials
    • 9.5.3. Interaction between Tab Design and Housing Material
  • 9.6. Conclusion

10. Design, Properties, and Manufacturing of Cylindrical LIB Cells

  • 10.1. Overview
  • 10.2. Experimental Materials and Methods
    • 10.2.1. Cell Design
    • 10.2.2. Cell Properties
  • 10.3. Experimental Results and Discussion
    • 10.3.1. Design of Cylindrical LIB Cell
    • 10.3.2. Jelly Roll Design
      • 10.3.2.1. Geometry
    • 10.3.3. Tab Design
    • 10.3.4. Cell Characteristics
      • 10.3.4.1. Energy Density
      • 10.3.4.2. Cell Resistance
      • 10.3.4.3. Thermal Behavior
    • 10.3.5. Jelly Roll Manufacturing
  • 10.4. Conclusion

11. Effects of Cell Size and Housing Materials in Tabless Cylindrical LIB Cells

  • 11.1. Overview
  • 11.2. Experiment
    • 11.2.1. Reference Cell
    • 11.2.2. Modeling
      • 11.2.2.1. Geometrical Modeling
      • 11.2.2.2. Jelly Roll Electrode Layers
      • 11.2.2.3. Hollow Core
      • 11.2.2.4. Tabless Design
    • 11.2.3. Cell Housing
    • 11.2.4. Thermo-Electrochemical Framework
      • 11.2.4.1. Boundary Conditions and Discretization
  • 11.3. Results and Discussion
    • 11.3.1. Energy Density
      • 11.3.1.1. Effect of Diameter
      • 11.3.1.2. Effect of Height
      • 11.3.1.3. Effect of Housing Material
    • 11.3.2. Fast Charging Performance
      • 11.3.2.1. Heat Transfer Algorithm
      • 11.3.2.2. Effect of Axial Cooling (Height/Housing)
      • 11.3.2.3. Effect of Axial Cooling (Diameter/Housing)
      • 11.3.2.4. Tab Design & Series Resistance Scaling
      • 11.3.2.5. Overall Effect on Fast Charging
  • 11.4. Conclusion

12. Thermal Runaway & Propagation in Large Tabless Cylindrical LIB Cells

  • 12.1. Study on TR & TP Characteristics
  • 12.2. Introduction: Need for New Design
    • 12.2.1. Test Cell & Innovations
    • 12.2.2. Limitations of Al Housing
    • 12.2.3. TR Test Methods
    • 12.2.4. Potting Compounds
    • 12.2.5. Future Research
  • 12.3. Experiment
    • 12.3.1. Tabless Cell Investigation
    • 12.3.2. Trigger Methods in Al Housing
      • 12.3.2.1. China Safety Standards
      • 12.3.2.2. FTRC Comparison
      • 12.3.2.3. Large Cell Triggering Limits
      • 12.3.2.4. Rupture Mechanism & Short Circuit
      • 12.3.2.5. Axial Nail Penetration
      • 12.3.2.6. Trigger Parameters & Geometry
      • 12.3.2.7. Accelerated Calorimetry (EV-ARC)
      • 12.3.2.8. Pressure Chamber Bench
      • 12.3.2.9. Small Module TP Test
      • 12.3.2.10. Radial Nail & Plate Test
      • 12.3.2.11. Mechanical Triggering
    • 12.3.3. EV-ARC Evaluation
      • 12.3.3.1. Decomposition & Detection Temp
      • 12.3.3.2. Reaction Mechanism
      • 12.3.3.3. Dispersion Analysis
      • 12.3.3.4. Temperature Distribution
      • 12.3.3.5. Enthalpy Estimation
      • 12.3.3.6. Voltage & Venting
      • 12.3.3.7. Post-TR Mass Mapping
      • 12.3.3.8. TR Cell Characteristics

13. Comparative Analysis: Tesla 4680 vs. BYD Blade Cell

  • 13.1. Introduction
  • 13.2. Results & Discussion
    • 13.2.1. Mechanical Design & Process
    • 13.2.2. Cell Housing
    • 13.2.3. Electrode Composition
    • 13.2.4. Contact Technology
    • 13.2.5. Electrode Structure & Measurement
    • 13.2.6. Manufacturing Process Flow
    • 13.2.7. Materials & Cost Analysis
    • 13.2.8. Electrical Performance
    • 13.2.9. Thermal Efficiency & Resistance
    • 13.2.10. Thermal Analysis

14. Modeling Study: Cell Size & Housing Impact in Tabless Cylindrical LIB

  • 14.1. Introduction
  • 14.2. Process Analysis
    • 14.2.1. Manufacturing Impact
    • 14.2.2. Reference Cell
    • 14.2.3. Manufacturing Classification
      • 14.2.3.1. Tabless Jelly Roll
      • 14.2.3.2. Housing
      • 14.2.3.3. Assembly
  • 14.3. Modeling
    • 14.3.1. Process-Based Cost Model
    • 14.3.2. Geometrical Model
    • 14.3.3. Process Model
    • 14.3.4. Operations Model
    • 14.3.5. Financial Model
  • 14.4. Results & Discussion
    • 14.4.1. Validation
    • 14.4.2. Cell Size Effects
      • 14.4.2.1. Diameter
      • 14.4.2.2. Height
      • 14.4.2.3. Cell Count
    • 14.4.3. Housing Material Effects
  • 14.5. Conclusion

15. Cost Comparison: Tabless vs. Standard Electrode Cylindrical LIB

  • 15.1. Summary: Tesla's Tabless Design
  • 15.2. Introduction
    • 15.2.1. Design Comparison & Process Considerations
  • 15.3. Methodology
    • 15.3.1. Cost Modeling
    • 15.3.2. Included Elements
    • 15.3.3. Parameterization
  • 15.4. Results
    • 15.4.1. Output Calculation
    • 15.4.2. Baseline Cost Analysis
    • 15.4.3. Sensitivity Analysis
  • 15.5. Conclusion

16. Status of 4680 Cell Manufacturers

  • 16.1. Tesla
  • 16.2. Panasonic
  • 16.3. LGES
  • 16.4. Samsung SDI
  • 16.5. SK On
  • 16.6. EVE
  • 16.7. BAK
  • 16.8. CATL
  • 16.9. Gotion Hi-TECH
  • 16.10. SVOLT
  • 16.11. CALB
  • 16.12. Envision AESC
  • 16.13. LISHEN
  • 16.14. Easpring (Dangsheng Technology)
  • 16.15. Kumyang
  • 16.16. BMW
  • 16.17. Dongwon Systems
  • 16.18. Sungwoo
  • 16.19. TCC Steel
  • 16.20. Dongkuk Industries
  • 16.21. Shinheung SEC
  • 16.22. Sangsin EDP
  • 16.23. LT Precision
  • 16.24. NIO

17. Patent Analysis on 4680 Batteries

  • 17.1. Battery with Tabless Electrode
  • 17.2. Tesla: Tabless Energy Storage Devices and Manufacturing Methods
  • 17.3. Tesla Dry Electrode Process Patent (1): Fine Particle Non-Fibrous Binder
  • 17.4. Tesla Dry Electrode Process Patent (2): Adhesive Passivation Film Composition for Dry Electrodes
  • 17.5. LG Energy Solution: Tabless-Related Patents (Electrode Assembly, Battery, Battery Pack, and Vehicle)
  • 17.6. Murata: Tabless Battery
  • 17.7. Jiangsu Zenergy Battery
  • 17.8. EVE Energy (Tab Flattening Device)
  • 17.9. Microvast Inc. (Tab Plate & Wound Battery)

18. Market Outlook for 4680 Batteries

  • 18.1. Overall Market Outlook
  • 18.2. Materials and Process Technology Forecast for 4680
  • 18.3. Chemical Industry: Silicon-Carbon Anode, PTFE, LiFSI, and Other Materials
    • 18.3.1. Silicon-Carbon Anode Materials
    • 18.3.2. PTFE, LiFSI, and Other Additives
    • 18.3.3. Non-Ferrous Metals: Lithium, Cobalt, Nickel Demand
    • 18.3.4. Hi-Ni Cathode + Silicon-Based Anode
  • 18.4. Policy, Demand, and CAPA Forecasts Surrounding 4680
    • 18.4.1. 4680 Cylindrical Battery Industry Chain
    • 18.4.2. Analysis of China's 4680 Battery Industry Status
    • 18.4.3. Market Structure of 4680 Cylindrical Batteries
    • 18.4.4. Declining Trend in Cylindrical Battery Adoption
    • 18.4.5. New Form Factor Development by Battery Manufacturers
    • 18.4.6. Development and Production Forecast for 4680 (46xxx) Batteries
    • 18.4.7. Development Trend of China's 4680 Battery Industry
    • 18.4.8. Demand Forecast for EV 46xx Batteries

19. Forecast of Tesla 4680 Cell Production

  • 19.1. Estimated Production at GIGA TEXAS
  • 19.2. Tesla 4680 Battery Production Timeline and Key Milestones
  • 19.3. Summary of Latest Tesla 4680 Battery Program
  • 19.4. Cost Structure of Tesla 4680 Battery Cells
  • 19.5. Efficiency Improvements and Cost Reduction Factors
  • 19.6. Current Status of Tesla 4680 Cell Development
  • 19.7. Recent Developments in Tesla 4680 and Supercharger Network
  • 19.8. Summary of Tesla's Battery Production and Lithium Refining Business
  • 19.9. 4680 Cell Production Capacity vs. Cybertruck Output
  • 19.10. Annual 4680 CAPA vs. Daily Production Output
  • 19.11. 4680 CAPA vs. Production Time Trends
  • 19.12. Major Assembly Processes at Tesla Giga Factory P/P Line