私有LTE及5G网路生态系(2025-2030)-机会、挑战、策略、产业及预测
市场调查报告书
商品编码
1887258

私有LTE及5G网路生态系(2025-2030)-机会、挑战、策略、产业及预测

Private LTE & 5G Network Ecosystem: 2025 - 2030 - Opportunities, Challenges, Strategies, Industry Verticals & Forecasts

出版日期: | 出版商: SNS Telecom & IT | 英文 2,872 Pages; 134 Tables & Figures | 商品交期: 最快1-2个工作天内

价格

预计2028年底,全球各垂直产业在私人LTE和5G网路基础设施的支出将超过72亿美元,2025年至2028年的复合年增长率约为22%。其中超过70%的投资(约51亿美元)将用于建构独立的私人5G网路。这些网路可望成为製造业和流程工业中工业4.0应用的主要无线连接媒介,以及公共安全、国防、公用事业和交通运输等产业关键任务型宽频通讯的主要媒介。这种前所未有的成长可能会将私有无线存取网(RAN)、行动核心网和传输网路领域转变为设备生态系统,到2020年代后半期,其市场规模将与公共行动营运商的基础设施大致相当。到 2030 年,专用网路支出可能占到所有行动网路基础设施支出的四分之一。

本报告对专用 LTE 和 5G 网路生态系统进行了详细评估,涵盖价值链、市场驱动因素、普及障碍、使能技术、营运和商业模式、垂直行业、应用场景、关键趋势、未来发展路线图、标准化、频谱可用性和分配、监管环境、案例研究以及公司概况和策略。

目录

第一章:引言

  • 摘要整理
  • 涵盖主题
  • 预测性细分
  • 关键问题解答
  • 主要发现
  • 私有 LTE/5G 网路参与总结
  • 研究方法
  • 目标受众

第二章:私有 LTE/5G 网路概述

  • 3GPP 定义的 LTE/5G 标准简介
    • LTE:首个全球蜂窝通讯标准
    • LTE-Advanced:提供真正的 4G 效能
    • LTE-Advanced Pro:为 5G 时代奠定基础
    • 5G:加速发展3GPP 在垂直产业的扩展
    • 向 5G-Advanced 和 6G 演进
  • 采用基于 LTE/5G 的专用无线网路的理由
    • 效能、移动性、可靠性和安全性
    • 能够满足广域和局部覆盖需求
    • 多样化的频段、频宽弹性与频谱效率
    • 与公共行动网路和非 3GPP 技术的互通性
    • 3GPP 对工业级和关键任务应用的支持
    • 面向未来的 6G 网路迁移路径
    • 晶片组、设备和网路设备生态系统的蓬勃发展
    • 部署与营运成本的经济可行性
  • 影响专用 LTE 和 5G 采用的关键因素网络
    • 关键通讯宽频的演进
    • 工业4.0的无线连线需求
    • 企业转型策略的在地化蜂窝网路覆盖
    • 中立託管、智慧城市、社区宽频及其他主题
  • 专用LTE和5G网路的实际应用
    • LTE和5G技术部署方法
    • 频段选择
    • 网路规模与地理覆盖范围
    • 营运场景
    • 商业模式
  • 专用LTE和5G网路价值链
    • 半导体与基础技术专家
    • 设备OEM厂商
    • 无线存取网、核心网路和传输基础设施供应商
    • 服务提供者
    • 最终使用者组织
    • 其他生态系公司
  • 市场驱动因素
    • 对高频宽、低延迟无线应用的需求不断增长
    • 来自关键通讯和工业4.0产业的支持
    • 室内、工业和偏远地区公共蜂窝网路覆盖有限
    • 适用于个人用途的频段选择
    • 有保障的连结性和服务品质 (QoS) 控制
    • 先进的网路安全和资料隐私
    • 营运商和供应商对新收入来源的需求
    • 政府资助的5G创新策略
  • 市场壁垒
    • 成本与投资报酬率论证
    • 网路部署与营运的技术复杂性
    • 与现有基础设施和应用的集成
    • 由于频段不足导致规模有限协调
    • 与非 3GPP 技术和解决方案的竞争
    • LTE/5G 终端设备挑战
    • 技能差距与熟练工程师短缺
    • 保守主义与缓慢的变革步伐

第三章 专用 LTE/5G 系统架构与技术

  • 专用 LTE/5G 网路架构组件
  • UE(用户设备)
    • 智慧型手机与行动设备
    • 工业级路由器与网关
    • 移动热点与车载终端
    • 固定无线 CPE(使用者驻地设备)
    • 平板电脑和笔记型电脑
    • 智慧型穿戴设备
    • 蜂窝物联网模组
    • 附加适配器
  • 无线接取网路 (RAN)
    • E-UTRAN - LTE RAN
    • NG-RAN - 5G NR 接入网
    • eNB/gNB 基地台的架构元件
  • 行动核心网
    • EPC(演进分组控制)核心网):LTE 行动核心网
    • 5GC(5G 核心网):用于独立组网 5G 部署的核心网
  • 传输网
    • 前传:RU 与 DU 之间的传输
    • 中传:DU 到 CU 的传输
    • 回传:RAN 到核心网路的传输
    • 物理传输介质
  • 服务和互连
    • 终端用户应用服务
    • 与 3GPP 和非 3GPP 网路的互连
  • 关键使能技术与概念
    • NPN(非公共网路) 3GPP 对公共网路的支持
    • 关键通信
    • 工业 4.0、蜂窝物联网
    • 高精度定位
    • 边缘运算
    • 网路切片
    • 网路分享
    • 端对端安全
    • 共享频段、免授权频段
    • 可快速部署的 LTE 和 5G 网路系统
    • 直接通讯、扩充覆盖范围
    • 云端原生、软体驱动、开放式网络
    • 网路智慧、自动化

第四章 主要垂直产业与应用

  • 多产业与企业应用能力
    • 行动宽频
    • 固定无线存取 (FWA)
    • 语音和讯息服务
    • 高画质视讯传输
    • 远端呈现与视讯会议
    • 多媒体广播与群播
    • 物联网网络
    • 穿戴式装置的无线连接
    • 非联网扩增实境/虚拟实境/混合现实
    • 即时全息投影
    • 触觉网路与触觉回馈
    • 精确定位和追踪
    • 工业自动化
    • 远端机器控制
    • 连网移动机器人
    • 无人驾驶和自主车辆
    • 超视距(BVLOS)无人机操作
    • 数据驱动的分析与洞察
    • 配备感测器的数位孪生
    • 预测性资产维护
  • 产业垂直领域与特定应用应用场景
    • 农业
    • 航空
    • 广播
    • 建筑
    • 教育
    • 林业
    • 医疗保健
    • 製造业
    • 军事
    • 采矿
    • 石油和天然气
    • 港口和海运
    • 公共安全
    • 铁路
    • 公用事业
    • 仓储和其他垂直行业

第五章 频段可利用性、分配与使用

  • 国家和地区授权频段
    • 低频段(低于 1 GHz)
    • 中频段(1-6 GHz)
    • 中高频段(7-24 GHz)
    • 高频段毫米波波)
  • 免授权频段
    • 1 GHz 以下频段 (470-790/800/900 MHz)
    • 1.8 GHz DECT 保护频段
    • 1.9 GHz sXGP 频段
    • 2.4 GHz (2,400-2,483.5 MHz)
    • 3.5 GHz CBRS GAA Tier
    • 5 GHz (5,150-5,925 MHz)
    • 6 GHz (5,925-7,125 MHz)
    • 60 GHz (57-71 GHz)
    • 其他频段
  • 北美洲
    • 美国
    • 加拿大
  • 亚太地区
    • 澳大利亚
    • 纽西兰
    • 中国
    • 香港香港
    • 台湾
    • 日本
    • 韩国
    • 新加坡
    • 马来西亚
    • 印尼
    • 菲律宾
    • 泰国
    • 越南
    • 寮国
    • 缅甸
    • 印度
    • 巴基斯坦
    • 孟加拉国
    • 斯里兰卡
    • 其他亚太地区
  • 欧洲
    • 英国
    • 爱尔兰共和国
    • 法国
    • 德国
    • 比利时
    • 荷兰
    • 瑞士
    • 奥地利
    • 义大利
    • 西班牙印度
    • 葡萄牙
    • 瑞典
    • 挪威
    • 丹麦
    • 芬兰
    • 爱沙尼亚
    • 拉脱维亚
    • 立陶宛
    • 捷克共和国
    • 波兰
    • 匈牙利
    • 斯洛维尼亚
    • 克罗埃西亚
    • 土耳其
    • 赛普勒斯
    • 希腊
    • 保加利亚
    • 罗马尼亚
    • 摩尔多瓦
    • 乌克兰
    • 白俄罗斯
    • 俄罗斯
    • 其他欧洲国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯联合大公国阿联酋航空
    • 卡达
    • 阿曼
    • 巴林
    • 科威特
    • 伊拉克
    • 约旦
    • 以色列
    • 埃及
    • 阿尔及利亚
    • 摩洛哥
    • 突尼斯
    • 南非
    • 波札那
    • 尚比亚
    • 安哥拉
    • 肯亚
    • 衣索比亚
    • 非洲
    • 刚果共和国
    • 加彭
    • 奈及利亚
    • 乌干达
    • 加纳
    • 塞内加尔
    • 其他中东和非洲国家
  • 拉丁美洲与中美洲国家
    • 巴西
    • 墨西哥
    • 阿根廷
    • 哥伦比亚
    • 智利
    • 秘鲁
    • 厄瓜多
    • 玻利维亚
    • 多明尼加共和国
    • 情人节
    • 千里达及托巴哥
    • 苏利南
    • 其他拉丁美洲和中美洲国家

第六章:标准化、监理与合作活动

  • 3GPP(第三代合作伙伴计画)
  • 450MHz联盟
  • 5G-ACIA(5G联盟) (面向互联工业与自动化)
  • 5GAIA(5G 应用产业联盟)
  • 5G 园区网路联盟
  • 5GDNA(5G 确定性网路联盟)
  • 5GFF(5G 未来论坛)
  • 5G 论坛(韩国)
  • 5G 健康协会
  • 5G-MAG(5G 媒体行动小组)
  • 5GMF(第五代行动通讯促进论坛,日本)
  • 5G-OT 联盟
  • 5GSA(5G 切片协会)
  • 6G-IA(6G 智慧网络,服务业协会)
  • AGURRE(法国主要营运无线网路用户协会)
  • APCO(公共安全通讯官员协会)国际
  • ATIS(电信业解决方案联盟)
  • BEREC(欧洲电子通讯监管机构)
  • BTG(荷兰协会)大型资讯通讯技术及电信用户
  • B-TrunC(宽频中继通讯)产业联盟
  • 中国城管协会 (CAMET)
  • 欧洲邮政电信管理协会 (CEPT)
  • 动态频谱联盟 (DSA)
  • 加拿大电力协会 (Electricity Canada)
  • 能源、电信和电力协会 (ENTELEC)
  • 电力研究院 (EPRI)
  • 欧盟铁路局 (ERA)
  • 欧洲电信标准协会 (ETSI)
  • 欧盟铁路联合组织 (EU-Rail)
  • 欧洲公用事业电信理事会 (EUTC)
  • 欧洲企业无线网路使用者协会 (EUWENA)
  • 企业无线联盟 (EWA)
  • free5GC
  • 全球行动供应商协会 (GSA)协会)
  • GSMA(全球行动通讯系统协会)
  • GUTMA(全球统一交通管理协会)
  • ITU(国际电信联盟)
  • JOTS(联合运营商技术规格)论坛
  • JRC(联合无线电公司)
  • KRRI(韩国铁路研究院)
  • LF(Linux基金会)
  • MFA(专用网路联盟)
  • MSSA(行动卫星服务协会)
  • NGA(下一代联盟)
  • NGMN(下一代行动网路)联盟
  • NSC(国家频谱联盟)
  • OCP(开放式运算专案)基金会
  • one6G协会
  • ONF(开放网路基金会)
  • OnGo联盟
  • OPC基金会
  • Open RAN政策联盟
  • Open5GCore
  • Open5GS & NextEPC
  • OpenInfra基金会
  • O-RAN 联盟
  • OSA(开放式无线介面软体联盟)
  • PIA(PSBN 创新联盟)
  • PMeV(德国专业行动无线电协会)
  • PSBTA(公共安全宽频技术协会)
  • PSCE(欧洲公共安全通讯协会)
  • Safe-Net 论坛
  • SCF(小型基地台论坛)
  • Seamless Air 联盟
  • SimpleRAN
  • srsRAN 项目
  • TCA(可信任连结联盟)
  • TCCA(关键通讯协会)
  • techUK
  • TIA(电信业协会)
  • TIP(电信基础设施项目)
  • TIWA(室内无线协会)
  • TTA(韩国电信技术协会)
  • 美国国家标准与技术研究院 (NIST)
  • 美国美国国家公共安全电信委员会 (NPSTC)
  • 美国国家电信与资讯管理局 (NTIA)
  • 公用事业宽频联盟 (UBBA)
  • 国际铁路联盟 (UIC)
  • 英国 5G 创新网络 (UK5G Innovation Network)
  • 欧洲铁路供应产业协会 (UNIFE)
  • 公用事业技术委员会 (UTC)
  • 拉丁美洲公用事业电信与技术委员会 (UTCAL)
  • 德国机械设备製造业联合会 (VDMA)
  • 无线宽频联盟 (WBA)
  • 空白光谱联盟 (White Space Alliance)
  • 无线创新论坛 (WInnForum)
  • 扩展全球平台 (XGP) 论坛
  • 其他

第 7 章 全球专用 LTE/5G 部署现况

  • 北美洲
    • 美国
    • 加拿大
  • 亚洲太平洋
    • 澳大利亚
    • 纽西兰
    • 中国
    • 香港
    • 台湾
    • 日本
    • 韩国
    • 新加坡
    • 马来西亚
    • 印尼
    • 巴布亚纽几内亚
    • 菲律宾
    • 泰国
    • 越南
    • 寮国
    • 缅甸
    • 印度
    • 巴基斯坦
    • 斯里兰卡
    • 孟加拉国 其他亚太地区国家
  • 欧洲
    • 英国
    • 爱尔兰 法国 德国 比利时 卢森堡 荷兰 瑞士 奥地利 义大利 西班牙 葡萄牙 瑞典 挪威 丹麦 芬兰 爱沙尼亚 拉脱维亚 立陶宛 捷克共和国
    • 波兰
    • 匈牙利
    • 斯洛伐克
    • 斯洛维尼亚
    • 克罗埃西亚
    • 土耳其
    • 赛普勒斯
    • 希腊
    • 保加利亚
    • 罗马尼亚
    • 塞尔维亚
    • 科索沃
    • 摩尔多瓦
    • 乌克兰
    • 白俄罗斯
    • 俄罗斯
    • 欧洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯联合大公国
    • 卡达
    • 阿曼
    • 巴林
    • 科威特
    • 伊拉克
    • 约旦
    • 黎巴嫩
    • 以色列
    • 埃及
    • 阿尔及利亚
    • 摩洛哥
    • 突尼斯
    • 南非
    • 波札那
    • 辛巴威
    • 尚比亚
    • 莫三比克
    • 肯亚
    • 衣索比亚
    • 索马利亚
    • 马达加斯加
    • 毛里求斯
    • 塞席尔
    • 安哥拉
    • 刚果共和国
    • 加彭
    • 中非共和国
    • 喀麦隆
    • 奈及利亚
    • 乌干达
    • 加纳
    • 科特迪瓦
    • 马里
    • 塞内加尔
    • 其他中东和非洲地区
  • 拉丁美洲与中美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 乌拉圭
    • 哥伦比亚
    • 智利
    • 秘鲁
    • 委内瑞拉
    • 厄瓜多
    • 玻利维亚
    • 多明尼加共和国
    • 牙买加
    • 巴贝多
    • 千里达及托巴哥
    • 荷兰加勒比海
    • 圭亚那
    • 苏利南
    • 其他拉丁美洲和中美洲

第 8 章:私有 LTE/5G 案例研究

  • 450connect
  • ABP(英国联合港口公司)
  • ADF(澳洲国防军)
  • Adif(西班牙铁路基础设施管理公司)
  • ADNOC(阿布达比国家石油公司)
  • Agnico Eagle Mines
  • 空中巴士公司
  • Ameren
  • ANA(全日空航空)
  • APM Terminals(马士基)
  • 沙特阿美数位公司
  • 安赛乐米塔尔
  • 日月光集团
  • ASN(阿尔卡特海底网路公司)
  • ASTRID
  • 澳洲大奖赛公司
  • BAM Nuttall
  • 巴塞隆纳港务局
  • 巴斯夫
  • BBC(英国广播公司)
  • 必和必拓
  • 贝莱德
  • BMW集团
  • 波士顿儿童医院
  • 巴西军队
  • 德国联邦国防军
  • 加州州立理工大学
  • 中国煤炭集团
  • 布朗斯维尔市
  • CJ物流
  • 克利夫兰诊所
  • 科隆-波昂机场
  • 中国商飞
  • 康菲石油
  • 水晶宫足球俱乐部
  • 中国南方电网
  • 康明斯
  • 德国铁路
  • 台达电子
  • 班昌区
  • 东义集团煤气化股份有限公司
  • 陶氏化学
  • 欧洲航空网络
  • 东西铁公司
  • 多明尼加南方铁路公司
  • 法国电力公司
  • 爱媛郡有线电视
  • 义大利国家电力公司 (Enel)
  • 挪威国家石油公司 (Equinor)
  • ESB Networks
  • ESN(紧急服务网)
  • 爱沙尼亚国防部
  • EUROGATE
  • Evergy
  • EWA(巴林电力水务局)
  • EWG(东西门)多式联运码头
  • Ferrovial
  • FirstNet(急救人员网路)
  • Fiskarheden
  • 福特汽车公司
  • 法兰克福大学医院
  • 法兰克福机场
  • 富士通
  • Gale South Beach Hotel
  • Gerdau
  • Gogo Business Aviation
  • Gold Fields
  • 巴黎机场集团 (Groupe ADP)
  • 广州地铁
  • 汉堡箱板(普林茨霍恩集团)
  • 阪神电气铁道
  • 希斯洛机场商业区电信
  • Helios Park 医院
  • 协兴工程
  • 广岛瓦斯
  • 香港国际机场
  • 和邦建设
  • 新竹市消防局
  • 和记港口
  • 现代汽车集团
  • iNET(基础设施网路)
  • 英业达株式会社
  • 爱尔兰橄榄球联盟
  • Jacto
  • JBG SMITH 地产
  • 京东物流
  • 捷豹路虎
  • 约翰迪尔
  • 关西电力
  • 高雄市警局
  • 川崎重工
  • 韩国电力公司
  • 韩国铁路
  • 熊谷组
  • 九州电力电力
  • 拉脱维亚国防部
  • 下科罗拉多河管理局 (LCRA)
  • 丽水市紧急管理局
  • 利物浦 5G 创建项目
  • local2u
  • 汉莎航空集团
  • 宾士集团
  • 美的集团
  • 三菱电机
  • 默里市学区
  • 南京市政府
  • 成田国际机场
  • 纳凡蒂亚
  • 国家首都地区交通运输公司 (NCRTC)
  • NEC 公司
  • NEDAA
  • 纽约地铁跨城线
  • 纽蒙特矿业公司
  • NLMK 集团
  • 挪威武装部队
  • Nutrien
  • Ocado
  • Ooredoo
  • orstead
  • 奥卢大学医院 (OYS)
  • PCK精炼厂
  • 巴西国家石油公司 (Petroleo Brasileiro)
  • PGE系统
  • 泰恩港
  • 瓦伦西亚港
  • 葡萄牙海军
  • 浦项製铁
  • PSA国际集团
  • PTA(西澳大利亚州公共交通管理局)
  • 理光
  • 罗伯特·博世
  • Roularta 媒体集团
  • 泰国皇家警察
  • RRF(未来无线电网路)
  • RTL 德国
  • 鲁丁管理公司
  • 安全网
  • 桑蒂苏族
  • 桑托斯
  • 圣马蒂尼奥
  • SCA (Svenska) Cellulosa Aktiebolaget)
  • SCE(南加州爱迪生)
  • SDG&E(圣地牙哥天然气和电力)
  • 沿海船舶
  • 国家电网公司(中国国家电网公司)
  • SGP(大巴黎公司)
  • 上海申通地铁集团
  • 深圳地铁
  • 西门子
  • 中国石油化学集团公司(中国石油化学股份有限公司)
  • SIRDEE
  • SMC(三星医疗中心)
  • Snam
  • SNCF(法国国家铁路公司)
  • 韩国国防部
  • Southern Linc
  • 西班牙陆军
  • 斯巴鲁汽车公司
  • 瑞典武装部队
  • Tampnet
  • TBN(三一广​​播网)
  • 特斯拉
  • 天津港集团
  • 东京都立大学
  • 道达尔能源
  • 丰田集团
  • 美国美国国防部 (DOD)
  • 杜塞尔多夫大学医院 (UKD)
  • 联合国 (UN)
  • 中山牛野
  • 帕洛阿尔托退伍军人医疗保健系统 (VA Palo Alto Health Care System)
  • 淡水河谷 (Vale)
  • VIRVE 2.0
  • 大众汽车集团 (Volkswagen Group)
  • 维吉尼亚港务局 (VPA)
  • 四川大学华西第二医院
  • 武汉钢铁公司 (WISCO)
  • X Shore
  • Xcel Energy
  • 梦岛货柜码头

第九章 生态系中的主要公司

第十章 市场规模估算与预测

  • 全球专用LTE与5G网路投资展望
  • 基础设施细分市场
    • 无线接取网路 (RAN)
    • 行动核心网
    • 传输网络
  • 科技世代
    • LTE
    • 5G
  • 小区规模
    • 室内小型基地台
    • 室外小型基地台
    • 宏基地台
  • 频率许可模式
    • 行动电信商自有频谱
    • 广域授权频谱频宽
    • 共享/本地授权频段
    • 免授权频段
  • 频率范围
    • 低频段(1 GHz 以下)
    • 中频段(1-6 GHz)
    • 高频段(毫米波)
  • 终端用户市场与产业
    • 垂直行业
    • 办公室、建筑和公共设施
  • 区域划分
    • 北美
    • 亚太
    • 欧洲
    • 中东和非洲
    • 拉丁美洲与中美洲

第十一章 结论与策略建议

  • 市场成长原因
  • 未来发展路线图(2025-2030)
  • 评估专用 LTE/5G 网路的实际和可量化效益
  • 供应商格局:比公共行动网路更加多样化
  • 取代 LTE/5G 设备的日益普及供应商
  • 聚焦私有 LTE/5G 安全、管理与编排需求
  • 为新创公司和现有私人 5G 专业公司提供资金
  • 行动电信商针对私有网路机会不断演进的策略
  • 系统整合商和新型私人网路服务供应商
  • 超大规模业者退出市场
  • 收购、合併和合作
  • 频谱放鬆管制措施的影响
  • 利用工业级 5G 连线实现 IT/OT 融合
  • 5G 网路切片与混合公私网路的作用
  • 6/6E/7 网路之间的私人蜂巢式网路和 Wi-Fi 关係
  • 与中立主机系统在室内覆盖范围的重迭
  • 私有网路与边缘运算的紧密协调运算
  • 在专用 LTE/5G 网路中采用开放式 RAN 和 vRAN
  • 基于 AI/ML 的网路自动化:减轻企业 IT 部门的负担
  • 利用卫星回传和 NTN/D2D 存取扩展覆盖范围
  • 专用 LTE/5G 网路中的互通性和漫游
  • 疫情后的变化与市场影响
  • 策略建议

Historically a niche segment of the wider wireless telecommunications industry, private cellular networks - also referred to as NPNs (Non-Public Networks) in 3GPP terminology - have rapidly gained popularity in recent years due to privacy, security, reliability, and performance advantages over public mobile networks and competing wireless technologies as well as their potential to replace hardwired connections with non-obstructive wireless links. With the 3GPP-led standardization of features such as MCX (Mission-Critical PTT, Video & Data), URLLC (Ultra-Reliable, Low-Latency Communications), TSC (Time-Sensitive Communications), RedCap (Reduced Capability) for IIoT (Industrial IoT), NTN (Non-Terrestrial Network) connectivity, SNPNs (Standalone NPNs), PNI-NPNs (Public Network-Integrated NPNs), and network slicing, private networks based on LTE and 5G technologies have gained recognition as an all-inclusive connectivity platform for critical communications, Industry 4.0, and enterprise transformation-related applications. Traditionally, these sectors have been dominated by LMR (Land Mobile Radio), Wi-Fi, industrial Ethernet, fiber, and other disparate networks.

The liberalization of spectrum is another factor that is accelerating the adoption of private LTE and 5G networks. National regulators across the globe have released or are in the process of granting access to shared and local area licensed spectrum. Examples include the three-tiered CBRS (Citizens Broadband Radio Service) spectrum sharing scheme in the United States, Canada's NCLL (Non-Competitive Local Licensing) framework, Germany's 3.7-3.8 GHz and 28 GHz licenses for 5G campus networks, United Kingdom's shared and local access licensing model, Ireland's planned licensing regime for local area WBB (Wireless Broadband) systems, France's vertical spectrum and sub-letting arrangements, Spain's reservation of the 2.3 GHz and 26 GHz bands for self-provisioned local networks, Netherlands' 3.5 GHz licenses for plot-based networks, Switzerland's NPN spectrum assignment in the 3.4-3.5 GHz band, Belgium's authorization of 3.8-4.2 GHz spectrum for private networks, Finland's 2.3 GHz and 26 GHz licenses for local 4G/5G networks, Sweden's 3.7 GHz and 26 GHz permits, Norway's regulation of local networks in the 3.8-4.2 GHz band, Poland's spectrum assignment for local government units and enterprises, Slovenia's allocation of 2.3 MHz and 3.6 GHz frequencies for local networks, Moldova's assignment of 3.8-4.2 GHz spectrum, Bahrain's private 5G network licenses, Japan's 4.6-4.9 GHz and 28 GHz local 5G network licenses, South Korea's e-Um 5G allocations in the 4.7 GHz and 28 GHz bands, Taiwan's provision of 4.8-4.9 GHz spectrum for private 5G networks, Hong Kong's LWBS (Localized Wireless Broadband Service) licenses, Thailand's allocation of 4.8 GHz PNO (Private Network Operator) spectrum, Australia's apparatus licensing approach, Brazil's multi-band SLP (Private Limited Service) licenses, and Argentina's 2.3-2.4 GHz SPIBA (Private Wireless Broadband System) licenses. Vast swaths of globally and regionally harmonized license-exempt spectrum are also available worldwide that can be used for the operation of unlicensed LTE and 5G NR-U equipment for private networks. In addition, dedicated national spectrum in sub-1 GHz and higher frequencies has been allocated for specific critical communications-related applications in many countries.

LTE and 5G-based private cellular networks come in many different shapes and sizes, including isolated end-to-end NPNs in industrial and enterprise settings, local RAN equipment for targeted cellular coverage, dedicated on-premise core network functions, virtual sliced private networks, secure MVNO (Mobile Virtual Network Operator) platforms for critical communications, and wide area networks for application scenarios such as PPDR (Public Protection & Disaster Relief) broadband, smart utility grids, railway communications, and A2G (Air-to-Ground) connectivity. However, it is important to note that equipment suppliers, system integrators, private network specialists, mobile operators, and other ecosystem players have slightly different perceptions as to what exactly constitutes a private cellular network. While there is near-universal consensus that private LTE and 5G networks refer to purpose-built cellular communications systems intended for the exclusive use of vertical industries and enterprises, some industry participants extend this definition to also include other market segments - for example, 3GPP-based community and residential broadband networks deployed by non-traditional service providers. Another closely related segment is neutral host infrastructure for shared or multi-operator coverage enhancement in indoor environments or underserved outdoor areas.

Despite the somewhat differing views on market definition, one thing is clear - private LTE and 5G networks are continuing their upward trajectory with deployments targeting a multitude of use cases across various industries. These range from localized wireless systems for dedicated connectivity in factories, warehouses, mines, power plants, substations, offshore wind farms, oil and gas facilities, construction sites, maritime ports, airports, hospitals, stadiums, office buildings, and university campuses to regional and nationwide sub-1 GHz private wireless broadband networks for utilities, FRMCS (Future Railway Mobile Communication System)-ready networks for train-to-ground communications, and hybrid government-commercial public safety broadband networks. Custom-built cellular networks have also been implemented in locations as remote as Antarctica, and there have even been attempts to deploy them on the Moon and in outer space.

The expanding influence of the private LTE and 5G network market is evident from the use of both permanent networks and portable network-in-a-box systems for professional TV broadcasting, enhanced fan engagement, and gameplay operations at major sports events, including the 2025 Ryder Cup, PGA Championship, Formula One Australian Grand Prix, SailGP's 2025 Season, Belgian Cup Final, FIS Nordic World Ski Championships, FISU World University Games, Diamond League, International Island Games, Sukma Games, Paris Summer Olympics, English Premier League, Bundesliga, UEFA European Football Championship, North West 200 Motorcycle Race, World Rowing Cup, MLB (Major League Baseball), UFL (United Football League), and NFL (National Football League), as well as the Republican and Democratic National Conventions in the lead-up to last year's United States presidential election. Rapidly deployable private cellular networks have also been utilized for enhanced communications in UN (United Nations) humanitarian missions, disaster relief operations, and recent military exercises such as the Norwegian military's Joint Viking 2025 exercise in the Arctic Circle; SABAK 2025, a joint exercise of the Philippine Army and USARPAC (U.S. Army Pacific) forces; U.S. Marine Corps' Steel Knight and ITX (Integrated Training Exercise) 1-25; JGSDF's (Japan Ground Self-Defense Force) Nankai Rescue disaster response training drill; and REPMUS, an unmanned systems experimentation exercise led by the Portuguese Navy.

Other examples of high-impact private LTE/5G engagements include but are not limited to multi-site, multi-national private cellular deployments at the facilities of Airbus, Anglo American, BHP, BMW, Boliden, BP, Chevron, Dow, Ford, Glencore, Hutchison Ports, Hyundai, Jaguar Land Rover, John Deere, LG Electronics, Lufthansa, Midea, Newmont, POSCO, Rio Tinto, Tesla, Toyota, Vale, Volkswagen, Walmart, and numerous other household names and industrial giants; service territory-wide private wireless projects of 450connect, Ameren, Cemig, CPFL Energia, EDP Brasil, ESB Networks, Evergy, LCRA (Lower Colorado River Authority), MLGW (Memphis Light, Gas and Water), Neoenergia, PGE (Polish Energy Group), SCE (Southern California Edison), SDG&E (San Diego Gas & Electric), Tampa Electric, TNB (Tenaga Nasional Berhad), Xcel Energy, and other utility companies; local wireless networks at the power plants of EDF, Eletrobras, Enel, KHNP (Korea Hydro & Nuclear Power), and Kyushu Electric Power; Saudi Arabia's $8.7 billion mission-critical broadband network project for the country's defense, law enforcement, and intelligence agencies; Aramco Digital's phased rollout of its nationwide 450 MHz 5G-ready radio network across 50 industrial zones; ADNOC's (Abu Dhabi National Oil Company) buildout of a multi-band private 5G network to connect thousands of remote wells and pipelines over an 11,000 square kilometer area; Tampnet's 5G NR upgrade and vendor swap of 120 base stations and converged 4G-5G packet core deployment across its global offshore mobile network; Equinor's multi-band 5G network upgrade for its offshore installations in the North Sea; Maersk's ongoing deployment of private wireless network equipment on board 450 vessels in its fleet; Gogo Business Aviation's 5G A2G network for inflight connectivity in North America, which spans 2,400 Open RAN-compliant RUs (Radio Units); Sweden's $35 million VGR (Region Vastra Gotaland)-5G initiative for indoor private 5G coverage at over 500 critical properties and hospitals in Vastra Gotaland County; defense sector 5G programs for the adoption of tactical cellular systems and permanent private 5G networks at military bases in the United States, Germany, United Kingdom, France, Spain, Italy, Portugal, Norway, Finland, Qatar, Australia, Japan, South Korea, and Singapore; DB's (Deutsche Bahn) and Adif's rollouts of FRMCS-ready cell sites along major rail routes and 5G campus networks at their maintenance and logistics facilities; and New York City Subway's implementation of a private 5G network to support CBTC (Communications-Based Train Control) operations.

SNS Telecom & IT projects that global spending on private LTE and 5G network infrastructure for vertical industries will grow at a CAGR of approximately 22% between 2025 and 2028, eventually exceeding $7.2 billion by the end of 2028. More than 70% of these investments - an estimated $5.1 billion - will be directed towards the buildout of standalone private 5G networks, which are well-positioned to become the predominant wireless connectivity medium for Industry 4.0 applications in manufacturing and process industries, as well as critical communications over mission-critical broadband networks for sectors such as public safety, defense, utilities, and transportation. This unprecedented level of growth is likely to transform the private RAN, mobile core, and transport network segments into an almost parallel equipment ecosystem to public mobile operator infrastructure in terms of market size by the late 2020s. By 2030, private networks could account for as much as a fourth of all mobile network infrastructure spending.

The "Private LTE & 5G Network Ecosystem: 2025 - 2030 - Opportunities, Challenges, Strategies, Industry Verticals & Forecasts" report presents an in-depth assessment of the private LTE and 5G network ecosystem, including the value chain, market drivers, barriers to uptake, enabling technologies, operational and business models, vertical industries, application scenarios, key trends, future roadmap, standardization, spectrum availability and allocation, regulatory landscape, case studies, ecosystem player profiles, and strategies. The report also presents global and regional market size forecasts from 2025 to 2030. The forecasts cover three infrastructure submarkets, two technology generations, four spectrum licensing models, 16 vertical industries, and five regional markets.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a database of over 8,800 global private LTE/5G engagements - as of Q4'2025.

Table of Contents

Chapter 1: Introduction

  • 1.1. Executive Summary
  • 1.2. Topics Covered
  • 1.3. Forecast Segmentation
  • 1.4. Key Questions Answered
  • 1.5. Key Findings
  • 1.6. Summary of Private LTE/5G Engagements
  • 1.7. Methodology
  • 1.8. Target Audience

Chapter 2: An Overview of Private LTE & 5G Networks

  • 2.1. An Introduction to the 3GPP-Defined LTE & 5G Standards
    • 2.1.1. LTE: The First Global Standard for Cellular Communications
    • 2.1.2. LTE-Advanced: Delivering the Promise of True 4G Performance
    • 2.1.3. LTE-Advanced Pro: Laying the Foundation for the 5G Era
    • 2.1.4. 5G: Accelerating 3GPP Expansion in Vertical Industries
      • 2.1.4.1. 5G Service Profiles
        • 2.1.4.1.1. eMBB (Enhanced Mobile Broadband)
        • 2.1.4.1.2. URLLC (Ultra-Reliable, Low-Latency Communications)
        • 2.1.4.1.3. mMTC/mIoT (Massive Machine-Type Communications/Internet of Things)
    • 2.1.5. 5G-Advanced & the Evolution to 6G
  • 2.2. Why Adopt LTE & 5G-Based Private Wireless Networks?
    • 2.2.1. Performance, Mobility, Reliability & Security Characteristics
    • 2.2.2. Ability to Address Both Wide Area & Localized Coverage Needs
    • 2.2.3. Variety of Frequency Bands, Bandwidth Flexibility & Spectral Efficiency
    • 2.2.4. Interworking With Public Mobile Networks & Non-3GPP Technologies
    • 2.2.5. 3GPP Support for Industrial-Grade & Mission-Critical Applications
    • 2.2.6. Future-Proof Transition Path Towards 6G Networks
    • 2.2.7. Thriving Ecosystem of Chipsets, Devices & Network Equipment
    • 2.2.8. Economic Viability of Deployment & Operational Costs
  • 2.3. Key Themes Influencing the Adoption of Private LTE & 5G Networks
    • 2.3.1. Critical Communications Broadband Evolution
    • 2.3.2. Industry 4.0-Driven Wireless Connectivity Requirements
    • 2.3.3. Localized Cellular Coverage for Enterprise Transformation Initiatives
    • 2.3.4. Neutral Hosting, Smart Cities, Community Broadband & Other Themes
  • 2.4. Practical Aspects of Private LTE & 5G Networks
    • 2.4.1. LTE & 5G Technology Deployment Modes
      • 2.4.1.1. LTE
      • 2.4.1.2. NSA (Non-Standalone) 5G
      • 2.4.1.3. SA (Standalone) 5G
    • 2.4.2. Spectrum Options
      • 2.4.2.1. National Spectrum for Specific Applications
        • 2.4.2.1.1. Defense & PPDR (Public Protection & Disaster Relief)
        • 2.4.2.1.2. Utilities & Critical Infrastructure Industries
        • 2.4.2.1.3. Aviation, Maritime & Railway Communications
        • 2.4.2.1.4. Other Segments
      • 2.4.2.2. Local Area Licensed Spectrum
        • 2.4.2.2.1. Local Area Licenses for Enterprises & Vertical Users
        • 2.4.2.2.2. Local Leasing of Public Mobile Operator Frequencies
        • 2.4.2.2.3. ASA (Authorized Shared Access) & Light Licensing
      • 2.4.2.3. Unlicensed Spectrum
        • 2.4.2.3.1. Designated License-Exempt Bands
        • 2.4.2.3.2. Opportunistic Unlicensed Access
    • 2.4.3. Network Size & Geographic Reach
      • 2.4.3.1. Wide Area Private Cellular Networks
      • 2.4.3.2. Medium-Scale Local Area Networks
      • 2.4.3.3. On-Premise Campus Networks
    • 2.4.4. Operational Scenarios
      • 2.4.4.1. Isolated NPNs (Non-Public Networks)
      • 2.4.4.2. Public Mobile Operator-Integrated NPNs
        • 2.4.4.2.1. Dedicated Mobile Operator RAN Coverage
        • 2.4.4.2.2. Shared RAN With On-Premise Core
        • 2.4.4.2.3. Shared RAN & Control Plane
        • 2.4.4.2.4. NPNs Hosted By Public Networks
      • 2.4.4.3. Virtual Sliced Private Networks
      • 2.4.4.4. Hybrid Public-Private Networks
      • 2.4.4.5. Shared Core Private Networks
      • 2.4.4.6. Secure MVNO (Mobile Virtual Network Operator) Arrangements
      • 2.4.4.7. Other Approaches
    • 2.4.5. Business Models
      • 2.4.5.1. Fully Independent Private Networks
      • 2.4.5.2. Service Provider-Managed Private Networks
      • 2.4.5.3. Hybrid Ownership, Management & Control
      • 2.4.5.4. Private NaaS (Network-as-a-Service)
      • 2.4.5.5. Other Business Models
  • 2.5. The Value Chain of Private LTE & 5G Networks
    • 2.5.1. Semiconductor & Enabling Technology Specialists
    • 2.5.2. Terminal OEMs (Original Equipment Manufacturers)
    • 2.5.3. RAN, Core & Transport Infrastructure Suppliers
    • 2.5.4. Service Providers
      • 2.5.4.1. Critical Communications, Industrial, OT & IT System Integrators
      • 2.5.4.2. Pure-Play Private 4G/5G Network Operators
      • 2.5.4.3. National Mobile Operators
      • 2.5.4.4. MVNOs
      • 2.5.4.5. Neutral Hosts
      • 2.5.4.6. Towercos (Tower Companies)
      • 2.5.4.7. Cloud & Edge Platform Providers
      • 2.5.4.8. Fixed-Line Service Providers
      • 2.5.4.9. Fiber Network Operators
      • 2.5.4.10. Satellite Communications Service Providers
    • 2.5.5. End User Organizations
    • 2.5.6. Other Ecosystem Players
  • 2.6. Market Drivers
    • 2.6.1. Growing Demand for High-Bandwidth & Low-Latency Wireless Applications
    • 2.6.2. Endorsement From the Critical Communications & Industry 4.0 Sectors
    • 2.6.3. Limited Public Cellular Coverage in Indoor, Industrial & Remote Environments
    • 2.6.4. Availability of Suitable Spectrum Options for Private Use
    • 2.6.5. Guaranteed Connectivity & QoS (Quality-of-Service) Control
    • 2.6.6. Greater Levels of Network Security & Data Privacy
    • 2.6.7. Operators' & Vendors' Desire for New Revenue Sources
    • 2.6.8. Government-Funded 5G Innovation Initiatives
  • 2.7. Market Barriers
    • 2.7.1. Cost & ROI (Return-On-Investment) Justification
    • 2.7.2. Technical Complexities of Network Deployment & Operation
    • 2.7.3. Integration With Existing Infrastructure & Applications
    • 2.7.4. Limited Scale Effects Due to Lack of Spectrum Harmonization
    • 2.7.5. Competition From Non-3GPP Technologies & Solutions
    • 2.7.6. LTE/5G Terminal Equipment-Related Challenges
    • 2.7.7. Skills Gap & Shortage of Proficient Engineers
    • 2.7.8. Conservatism & Slow Pace of Change

Chapter 3: Private LTE/5G System Architecture & Technologies

  • 3.1. Architectural Components of Private LTE/5G Networks
  • 3.2. UE (User Equipment)
    • 3.2.1. Smartphones & Handportable Devices
    • 3.2.2. Industrial-Grade Routers & Gateways
    • 3.2.3. Mobile Hotspots & Vehicular Terminals
    • 3.2.4. Fixed Wireless CPEs (Customer Premises Equipment)
    • 3.2.5. Tablets & Notebook PCs
    • 3.2.6. Smart Wearables
    • 3.2.7. Cellular IoT Modules
    • 3.2.8. Add-On Dongles
  • 3.3. RAN (Radio Access Network)
    • 3.3.1. E-UTRAN - LTE RAN
      • 3.3.1.1. eNBs - LTE Base Stations
    • 3.3.2. NG-RAN - 5G NR Access Network
      • 3.3.2.1. gNBs - 5G NR Base Stations
      • 3.3.2.2. en-gNBs - Secondary Node 5G NR Base Stations
      • 3.3.2.3. ng-eNBs - Next-Generation LTE Base Stations
    • 3.3.3. Architectural Components of eNB/gNB Base Stations
      • 3.3.3.1. RUs (Radio Units)
      • 3.3.3.2. Integrated Radio & Baseband Units
      • 3.3.3.3. DUs (Distributed Baseband Units)
      • 3.3.3.4. CUs (Centralized Baseband Units)
  • 3.4. Mobile Core
    • 3.4.1. EPC (Evolved Packet Core): LTE Mobile Core
      • 3.4.1.1. SGW (Serving Gateway)
      • 3.4.1.2. PGW (Packet Data Network Gateway)
      • 3.4.1.3. MME (Mobility Management Entity)
      • 3.4.1.4. HSS (Home Subscriber Server)
      • 3.4.1.5. PCRF (Policy Charging & Rules Function)
    • 3.4.2. 5GC (5G Core): Core Network for Standalone 5G Implementations
      • 3.4.2.1. Access, Mobility & Session Management
        • 3.4.2.1.1. AMF (Access & Mobility Management Function)
        • 3.4.2.1.2. SMF (Session Management Function)
        • 3.4.2.1.3. UPF (User Plane Function)
      • 3.4.2.2. Subscription & Data Management
        • 3.4.2.2.1. AUSF (Authentication Server Function)
        • 3.4.2.2.2. AAnF (AKMA Anchor Function)
        • 3.4.2.2.3. UDM (Unified Data Management)
        • 3.4.2.2.4. UDR (Unified Data Repository)
        • 3.4.2.2.5. UDSF (Unstructured Data Storage Function)
        • 3.4.2.2.6. UCMF (UE Radio Capability Management Function)
        • 3.4.2.2.7. 5G-EIR (5G Equipment Identity Register)
      • 3.4.2.3. Policy & Charging
        • 3.4.2.3.1. PCF (Policy Control Function)
        • 3.4.2.3.2. CHF (Charging Function)
      • 3.4.2.4. Signaling & Routing
        • 3.4.2.4.1. SCP (Service Communication Proxy)
        • 3.4.2.4.2. SEPP (Security Edge Protection Proxy)
        • 3.4.2.4.3. BSF (Binding Support Function)
      • 3.4.2.5. Network Resource Management
        • 3.4.2.5.1. NEF (Network Exposure Function)
        • 3.4.2.5.2. NRF (Network Repository Function)
        • 3.4.2.5.3. NSSF (Network Slice Selection Function)
        • 3.4.2.5.4. NSSAAF (Network Slice-Specific & SNPN Authentication-Authorization Function)
        • 3.4.2.5.5. NSACF (Network Slice Admission Control Function)
      • 3.4.2.6. Data Analytics & Automation
        • 3.4.2.6.1. NWDAF (Network Data Analytics Function)
        • 3.4.2.6.2. AnLF (Analytics Logical Function)
        • 3.4.2.6.3. MTLF (Model Training Logical Function)
        • 3.4.2.6.4. DCCF (Data Collection Coordination Function)
        • 3.4.2.6.5. ADRF (Analytics Data Repository Function)
        • 3.4.2.6.6. MFAF (Messaging Framework Adaptor Function)
        • 3.4.2.6.7. MDAF (Management Data Analytics Function)
      • 3.4.2.7. Location Services
        • 3.4.2.7.1. LMF (Location Management Function)
        • 3.4.2.7.2. GMLC (Gateway Mobile Location Center)
      • 3.4.2.8. Application Enablement
        • 3.4.2.8.1. AFs (Application Functions)
        • 3.4.2.8.2. SMSF (Short Message Service Function)
        • 3.4.2.8.3. CBCF (Cell Broadcast Center Function)
        • 3.4.2.8.4. 5G DDNMF (5G Direct Discovery Name Management Function)
        • 3.4.2.8.5. TSCTSF (Time-Sensitive Communication & Time Synchronization Function)
        • 3.4.2.8.6. TSN AF (Time-Sensitive Networking Application Function)
        • 3.4.2.8.7. EASDF (Edge Application Server Discovery Function)
      • 3.4.2.9. Multicast-Broadcast Support
        • 3.4.2.9.1. MB-SMF (Multicast-Broadcast SMF)
        • 3.4.2.9.2. MB-UPF (Multicast-Broadcast UPF)
        • 3.4.2.9.3. MBSF (Multicast-Broadcast Service Function)
        • 3.4.2.9.4. MBSTF (Multicast-Broadcast Service Transport Function)
  • 3.5. Transport Network
    • 3.5.1. Fronthaul: RU-to-DU Transport
    • 3.5.2. Midhaul: DU-to-CU Transport
    • 3.5.3. Backhaul: RAN-to-Core Transport
    • 3.5.4. Physical Transmission Mediums
      • 3.5.4.1. Fiber & Wireline Transport Technologies
        • 3.5.4.1.1. Owned, Lit & Dark Fiber
        • 3.5.4.1.2. Ethernet & IP-Based Transport
        • 3.5.4.1.3. WDM (Wavelength Division Multiplexing)
        • 3.5.4.1.4. PON (Passive Optical Network)
        • 3.5.4.1.5. OTN (Optical Transport Network)
        • 3.5.4.1.6. DOCSIS, G.fast & Other Technologies
      • 3.5.4.2. Microwave & mmWave (Millimeter Wave) Wireless Links
        • 3.5.4.2.1. Traditional Bands (6 - 42 GHz)
        • 3.5.4.2.2. V-Band (60 GHz)
        • 3.5.4.2.3. E-Band (70/80 GHz)
        • 3.5.4.2.4. W-Band (92 - 114.25 GHz)
        • 3.5.4.2.5. D-Band (130 - 174.8 GHz)
      • 3.5.4.3. Satellite Communications
        • 3.5.4.3.1. GEO (Geostationary Earth Orbit)
        • 3.5.4.3.2. MEO (Medium Earth Orbit)
        • 3.5.4.3.3. LEO (Low Earth Orbit)
  • 3.6. Services & Interconnectivity
    • 3.6.1. End User Application Services
      • 3.6.1.1. Generic Broadband, Messaging & IoT Services
      • 3.6.1.2. IMS Core: VoLTE-VoNR (Voice-Over-LTE/5G NR) & MMTel (Multimedia Telephony)
      • 3.6.1.3. MBMS, eMBMS, FeMBMS & 5G MBS/5MBS (5G Multicast-Broadcast Services)
      • 3.6.1.4. Group Communications & MCS (Mission-Critical Services)
      • 3.6.1.5. IIoT (Industrial IoT), Cyber-Physical Control & Domain-Specific Connected Services
      • 3.6.1.6. ProSe (Proximity-Based Services) for Direct D2D (Device-to-Device) Discovery & Communications
      • 3.6.1.7. Vehicular, Aviation, Maritime & Railway-Related Applications
      • 3.6.1.8. 3GPP Service Frameworks for Vertical Industries
        • 3.6.1.8.1. CAPIF (Common API Framework)
        • 3.6.1.8.2. SEAL (Service Enabler Architecture Layer for Verticals)
        • 3.6.1.8.3. EDGEAPP (Architecture for Enabling Edge Applications)
      • 3.6.1.9. VAL (Vertical Application Layer) Enablers
        • 3.6.1.9.1. V2X (Vehicle-to-Everything)
        • 3.6.1.9.2. UAS (Uncrewed Aerial Systems)
        • 3.6.1.9.3. 5GMARCH/MSGin5G (Messaging in 5G)
        • 3.6.1.9.4. FF (Factories of the Future)
        • 3.6.1.9.5. PINAPP (Personal IoT Networks), XR (Extended Reality) & Others
    • 3.6.2. Interconnectivity With 3GPP & Non-3GPP Networks
      • 3.6.2.1. 3GPP Roaming & Service Continuity
        • 3.6.2.1.1. National & International Roaming
        • 3.6.2.1.2. Service Continuity Outside Network Footprint
      • 3.6.2.2. Non-3GPP Network Integration
        • 3.6.2.2.1. ePDG (Evolved Packet Data Gateway)
        • 3.6.2.2.2. TWAG/TWAP (Trusted WLAN Access Gateway/Proxy)
        • 3.6.2.2.3. ANDSF (Access Network Discovery & Selection Function)
        • 3.6.2.2.4. N3IWF (Non-3GPP Interworking Function)
        • 3.6.2.2.5. TNGF (Trusted Non-3GPP Gateway Function)
        • 3.6.2.2.6. TWIF (Trusted WLAN Interworking Function)
        • 3.6.2.2.7. NSWOF (Non-Seamless WLAN Offload Function)
        • 3.6.2.2.8. W-AGF (Wireline Access Gateway Function)
        • 3.6.2.2.9. IWF (Interworking Function) for LMR (Land Mobile Radio)
        • 3.6.2.2.10. ATSSS (Access Traffic Steering, Switching & Splitting)
  • 3.7. Key Enabling Technologies & Concepts
    • 3.7.1. 3GPP Support for NPNs (Non-Public Networks)
      • 3.7.1.1. Types of NPNs
        • 3.7.1.1.1. SNPNs (Standalone NPNs)
        • 3.7.1.1.2. PNI-NPNs (Public Network-Integrated NPNs)
      • 3.7.1.2. SNPN Identification & Selection
      • 3.7.1.3. PNI-NPN Resource Allocation & Isolation
      • 3.7.1.4. CAG (Closed Access Group) for Cell Access Control
      • 3.7.1.5. Mobility, Roaming & Service Continuity
      • 3.7.1.6. Interworking Between SNPNs & Public Networks
      • 3.7.1.7. UE Configuration & Subscription-Related Aspects
      • 3.7.1.8. Other 3GPP-Defined Capabilities for NPNs
    • 3.7.2. Critical Communications
      • 3.7.2.1. MCX (Mission-Critical PTT, Video & Data)
      • 3.7.2.2. QPP (QoS, Priority & Preemption)
      • 3.7.2.3. IOPS (Isolated Operation for Public Safety)
      • 3.7.2.4. Cell Site & Infrastructure Hardening
      • 3.7.2.5. HPUE (High-Power User Equipment)
      • 3.7.2.6. Other UE-Related Functional Enhancements
    • 3.7.3. Industry 4.0 & Cellular IoT
      • 3.7.3.1. URLLC Techniques: High-Reliability & Low-Latency Enablers
      • 3.7.3.2. 5G LAN (Local Area Network)-Type Service
      • 3.7.3.3. Integration With IEEE 802.1 TSN (Time-Sensitive Networking) Systems
      • 3.7.3.4. Native 3GPP Framework for TSC (Time-Sensitive Communications)
      • 3.7.3.5. Support for IETF DetNet (Deterministic Networking)
      • 3.7.3.6. 5G NR Light: RedCap (Reduced Capability) UE Type
      • 3.7.3.7. eRedCap (Enhanced RedCap) for Low-Tier Use Cases
      • 3.7.3.8. Ambient IoT Technology Supporting Battery-Less Operation
      • 3.7.3.9. eMTC, NB-IoT & mMTC: LTE-Based Wide Area & High-Density IoT Applications
    • 3.7.4. High-Precision Positioning
      • 3.7.4.1. Assisted-GNSS (Global Navigation Satellite System)
      • 3.7.4.2. RAN-Based Positioning Techniques
      • 3.7.4.3. RAN-Independent Methods
    • 3.7.5. Edge Computing
      • 3.7.5.1. Optimizing Latency, Service Performance & Backhaul Costs
      • 3.7.5.2. 3GPP-Defined Features for Edge Computing Support
      • 3.7.5.3. Public vs. Private Edge Computing
    • 3.7.6. Network Slicing
      • 3.7.6.1. Logical Partitioning of Network Resources
      • 3.7.6.2. 3GPP Functions, Identifiers & Procedures for Slicing
      • 3.7.6.3. RAN Slicing
      • 3.7.6.4. Mobile Core Slicing
      • 3.7.6.5. Transport Network Slicing
      • 3.7.6.6. UE-Based Network Slicing Features
      • 3.7.6.7. Management & Orchestration Aspects
    • 3.7.7. Network Sharing
      • 3.7.7.1. Service-Specific PLMN (Public Land Mobile Network) IDs
      • 3.7.7.2. DNN (Data Network Name)/APN (Access Point Name)-Based Isolation
      • 3.7.7.3. GWCN (Gateway Core Network): Core Network Sharing
      • 3.7.7.4. MOCN (Multi-Operator Core Network): RAN & Spectrum Sharing
      • 3.7.7.5. MORAN (Multi-Operator RAN): RAN Sharing Without Spectrum Pooling
      • 3.7.7.6. DECOR (Dedicated Core) & eDECOR (Enhanced DECOR)
      • 3.7.7.7. Roaming in Non-Overlapping Service Areas
      • 3.7.7.8. Passive Sharing of Infrastructure Resources
    • 3.7.8. E2E (End-to-End) Security
      • 3.7.8.1. UE Authentication Framework
      • 3.7.8.2. Subscriber Privacy
      • 3.7.8.3. Air Interface Confidentiality & Integrity
      • 3.7.8.4. Resilience Against Radio Jamming
      • 3.7.8.5. RAN, Core & Transport Network Security
      • 3.7.8.6. Security Aspects of Network Slicing
      • 3.7.8.7. Application Domain Protection
      • 3.7.8.8. Other Security Considerations
    • 3.7.9. Shared & Unlicensed Spectrum
      • 3.7.9.1. CBRS (Citizens Broadband Radio Service): Three-Tiered Sharing
      • 3.7.9.2. LSA (Licensed Shared Access) & eLSA (Evolved LSA): Two-Tiered Sharing
      • 3.7.9.3. AFC (Automated Frequency Coordination): License-Exempt Sharing
      • 3.7.9.4. Local Area Licensing of Shared Spectrum
      • 3.7.9.5. LTE-U, LAA (Licensed Assisted Access), eLAA (Enhanced LAA) & FeLAA (Further Enhanced LAA)
      • 3.7.9.6. MulteFire: Standalone LTE Operation in Unlicensed Spectrum
      • 3.7.9.7. License-Exempt 1.9 GHz sXGP (Shared Extended Global Platform)
      • 3.7.9.8. 5G NR-U (NR in Unlicensed Spectrum)
    • 3.7.10. Rapidly Deployable LTE & 5G Network Systems
      • 3.7.10.1. NIB (Network-in-a-Box) Systems
      • 3.7.10.2. Vehicular COWs (Cells-on-Wheels)
      • 3.7.10.3. Aerial Cell Sites
      • 3.7.10.4. Maritime Cellular Platforms
    • 3.7.11. Direct Communications & Coverage Expansion
      • 3.7.11.1. Sidelink for Direct Mode D2D Communications
      • 3.7.11.2. UE-to-Network & UE-to-UE Relays
      • 3.7.11.3. Indoor & Outdoor Small Cells
      • 3.7.11.4. DAS (Distributed Antenna Systems)
      • 3.7.11.5. IAB (Integrated Access & Backhaul)
      • 3.7.11.6. Mobile IAB: VMRs (Vehicle-Mounted Relays)
      • 3.7.11.7. MWAB (Mobile gNB With Wireless Access Backhauling)
      • 3.7.11.8. NCRs (Network-Controlled Repeaters)
      • 3.7.11.9. NTNs (Non-Terrestrial Networks)
      • 3.7.11.10. ATG/A2G (Air-to-Ground) Connectivity
    • 3.7.12. Cloud-Native, Software-Driven & Open Networking
      • 3.7.12.1. Cloud-Native Technologies
      • 3.7.12.2. Microservices & SBA (Service-Based Architecture)
      • 3.7.12.3. Containerization of Network Functions
      • 3.7.12.4. NFV (Network Functions Virtualization)
      • 3.7.12.5. SDN (Software-Defined Networking)
      • 3.7.12.6. Cloud Compute, Storage & Networking Infrastructure
      • 3.7.12.7. APIs (Application Programming Interfaces)
      • 3.7.12.8. Open RAN & Core Architectures
    • 3.7.13. Network Intelligence & Automation
      • 3.7.13.1. AI (Artificial Intelligence)
      • 3.7.13.2. Machine & Deep Learning
      • 3.7.13.3. Big Data & Advanced Analytics
      • 3.7.13.4. SON (Self-Organizing Networks)
      • 3.7.13.5. Intelligent Control, Management & Orchestration
      • 3.7.13.6. Support for Network Intelligence & Automation in 3GPP Standards

Chapter 4: Key Vertical Industries & Applications

  • 4.1. Cross-Sector & Enterprise Application Capabilities
    • 4.1.1. Mobile Broadband
    • 4.1.2. FWA (Fixed Wireless Access)
    • 4.1.3. Voice & Messaging Services
    • 4.1.4. High-Definition Video Transmission
    • 4.1.5. Telepresence & Video Conferencing
    • 4.1.6. Multimedia Broadcasting & Multicasting
    • 4.1.7. IoT (Internet of Things) Networking
    • 4.1.8. Wireless Connectivity for Wearables
    • 4.1.9. Untethered AR/VR/MR (Augmented, Virtual & Mixed Reality)
    • 4.1.10. Real-Time Holographic Projections
    • 4.1.11. Tactile Internet & Haptic Feedback
    • 4.1.12. Precise Positioning & Tracking
    • 4.1.13. Industrial Automation
    • 4.1.14. Remote Control of Machines
    • 4.1.15. Connected Mobile Robotics
    • 4.1.16. Unmanned & Autonomous Vehicles
    • 4.1.17. BVLOS (Beyond Visual Line-of-Sight) Operation of Drones
    • 4.1.18. Data-Driven Analytics & Insights
    • 4.1.19. Sensor-Equipped Digital Twins
    • 4.1.20. Predictive Maintenance of Assets
  • 4.2. Vertical Industries & Specific Application Scenarios
    • 4.2.1. Agriculture
      • 4.2.1.1. Intelligent Monitoring of Crop, Soil & Weather Conditions
      • 4.2.1.2. IoT & Advanced Analytics-Driven Yield Optimization
      • 4.2.1.3. Sensor-Based Smart Irrigation Control Systems
      • 4.2.1.4. Real-Time Tracking & Geofencing in Farms
      • 4.2.1.5. Livestock & Aquaculture Health Management
      • 4.2.1.6. Video-Based Remote Veterinary Inspections
      • 4.2.1.7. Unmanned Autonomous Tractors & Farm Vehicles
      • 4.2.1.8. Robots for Planting, Weeding & Harvesting
      • 4.2.1.9. 5G-Equipped Agricultural Drones
      • 4.2.1.10. Connected Greenhouses & Vertical Farms
    • 4.2.2. Aviation
      • 4.2.2.1. Inflight Connectivity for Passengers & Cabin Crew
      • 4.2.2.2. Connected Airports for Enhanced Traveler & Visitor Experience
      • 4.2.2.3. Coordination of Ground Support Equipment, Vehicles & Personnel
      • 4.2.2.4. ATM (Air Traffic Management) for Drones & Urban Air Mobility Vehicles
      • 4.2.2.5. Wireless Upload of EFB (Electronic Flight Bag) & IFE (In-Flight Entertainment) Updates
      • 4.2.2.6. Aircraft Data Offload for Operational & Maintenance Purposes
      • 4.2.2.7. Video Surveillance of Airport Surface & Terminal Areas
      • 4.2.2.8. 5G-Enabled Remote Inspection & Repair of Aircraft
      • 4.2.2.9. Navigation, Weather & Other IoT Sensors
      • 4.2.2.10. Smart Baggage Handling
      • 4.2.2.11. Asset Awareness & Tracking
      • 4.2.2.12. Passenger Flow & Resource Management
      • 4.2.2.13. Automation of Check-In & Boarding Procedures
      • 4.2.2.14. Intelligent Airport Service Robots
    • 4.2.3. Broadcasting
      • 4.2.3.1. 3GPP-Based PMSE (Program Making & Special Events)
      • 4.2.3.2. Live AV (Audio-Visual) Media Production Using NPNs
      • 4.2.3.3. Private 5G-Enabled Production in Remote Locations
      • 4.2.3.4. Network Slicing for Contribution Feeds
      • 4.2.3.5. Wire-Free Cameras & Microphones
      • 4.2.3.6. Multicast & Broadcast Content Distribution
    • 4.2.4. Construction
      • 4.2.4.1. Wireless Connectivity for Construction Sites & Field Offices
      • 4.2.4.2. Instantaneous Access to Business-Critical Applications
      • 4.2.4.3. 5G-Based Remote Control of Heavy Machinery
      • 4.2.4.4. Autonomous Mobile Robots for Construction
      • 4.2.4.5. IoT Sensor-Driven Maintenance of Equipment
      • 4.2.4.6. Video Surveillance & Analytics for Site Security
      • 4.2.4.7. Real-Time Visibility of Personnel, Assets & Materials
      • 4.2.4.8. Aerial Surveying & Monitoring of Construction Sites
    • 4.2.5. Education
      • 4.2.5.1. Remote & Distance Learning Services
      • 4.2.5.2. Mobile Access to Academic Resources
      • 4.2.5.3. 5G-Connected Smart Classrooms
      • 4.2.5.4. Automation of Administrative Tasks
      • 4.2.5.5. Personalized & Engaging Learning
      • 4.2.5.6. AR/VR-Based Immersive Lessons
      • 4.2.5.7. 5G-Enabled Virtual Field Trips
      • 4.2.5.8. Educational Telepresence Robots
    • 4.2.6. Forestry
      • 4.2.6.1. Wireless Connectivity for Forestry Operations & Recreation
      • 4.2.6.2. 5G-Facilitated Teleoperation of Forestry Equipment
      • 4.2.6.3. Autonomous Harvesting & Milling Machinery
      • 4.2.6.4. Real-Time Tracking of Equipment, Vehicles & Personnel
      • 4.2.6.5. Cellular IoT Sensors for Biological & Environmental Monitoring
      • 4.2.6.6. Wireless Cameras for Wildlife Observation, Conservation & Security
      • 4.2.6.7. Early Wildfire Detection & Containment Systems
      • 4.2.6.8. Drones for Search & Rescue Operations
    • 4.2.7. Healthcare
      • 4.2.7.1. 5G-Connected Smart Hospitals & Healthcare Facilities
      • 4.2.7.2. Wireless Transmission of Medical Imagery & Rich Datasets
      • 4.2.7.3. Real-Time Monitoring of Patients in Acute & Intensive Care
      • 4.2.7.4. Telehealth Video Consultations for Visual Assessment
      • 4.2.7.5. Connectivity for AI-Based Healthcare Applications
      • 4.2.7.6. AR Systems for Complex Medical Procedures
      • 4.2.7.7. Remote-Controlled Surgery & Examination
      • 4.2.7.8. Assisted Living & Rehabilitation Robotics
      • 4.2.7.9. Immersive VR-Based Medical & Surgical Training
      • 4.2.7.10. Connected Ambulances for EMS (Emergency Medical Services)
    • 4.2.8. Manufacturing
      • 4.2.8.1. Untethered Connectivity for Production & Process Automation
      • 4.2.8.2. Wireless Motion Control & C2C (Control-to-Control) Communications
      • 4.2.8.3. Cellular-Equipped Mobile Control Panels
      • 4.2.8.4. Mobile Robots & AGVs (Automated Guided Vehicles)
      • 4.2.8.5. Autonomous Forklifts & Warehouse Robotics
      • 4.2.8.6. AR-Facilitated Factory Floor Operations
      • 4.2.8.7. Machine Vision-Based Quality Inspection
      • 4.2.8.8. Closed-Loop Process Control
      • 4.2.8.9. Process & Environmental Monitoring
      • 4.2.8.10. Precise Indoor Positioning for Asset Management
      • 4.2.8.11. Remote Access & Maintenance of Equipment
    • 4.2.9. Military
      • 4.2.9.1. 5G-Based Tactical Battlefield Communications
      • 4.2.9.2. Smart Military Bases & Command Posts
      • 4.2.9.3. ISR (Intelligence, Surveillance & Reconnaissance)
      • 4.2.9.4. Command & Control of Weapon Systems
      • 4.2.9.5. Remote Operation of Robotics & Unmanned Assets
      • 4.2.9.6. AR HUD (Heads-Up Display) Systems
      • 4.2.9.7. Wireless VR/MR-Based Military Training
      • 4.2.9.8. Perimeter Security & Force Protection
    • 4.2.10. Mining
      • 4.2.10.1. Safety-Critical Communications in Remote Mining Environments
      • 4.2.10.2. Wireless Control of Drilling, Excavation & Related Equipment
      • 4.2.10.3. Automated Loading, Haulage & Train Operations
      • 4.2.10.4. Video-Based Monitoring of Personnel & Assets
      • 4.2.10.5. Underground Positioning & Geofencing
      • 4.2.10.6. Smart Ventilation & Water Management
      • 4.2.10.7. Real-Time Operational Intelligence
      • 4.2.10.8. AR & VR for Mining Operations
    • 4.2.11. Oil & Gas
      • 4.2.11.1. Wireless Connectivity for Remote Exploration & Production Sites
      • 4.2.11.2. Critical Voice & Data-Based Mobile Workforce Communications
      • 4.2.11.3. Push-to-Video & Telepresence Conferencing for Field Operations
      • 4.2.11.4. Cellular-Equipped Surveillance Cameras for Situational Awareness
      • 4.2.11.5. IoT Sensor-Enabled Remote Monitoring & Automation of Processes
      • 4.2.11.6. SCADA (Supervisory Control & Data Acquisition) Communications
      • 4.2.11.7. Location Services for Worker Safety & Asset Tracking
      • 4.2.11.8. AR Smart Helmets for Hands-Free Remote Assistance
      • 4.2.11.9. Predictive Maintenance of Oil & Gas Facilities
      • 4.2.11.10. Mobile Robots for Safety Hazard Inspections
    • 4.2.12. Ports & Maritime Transport
      • 4.2.12.1. Critical Communications for Port Workers
      • 4.2.12.2. Automation of Port & Terminal Operations
      • 4.2.12.3. 5G-Connected AGVs for Container Transport
      • 4.2.12.4. Remote-Controlled Cranes & Terminal Tractors
      • 4.2.12.5. Video Analytics for Operational Purposes
      • 4.2.12.6. Environmental & Condition Monitoring
      • 4.2.12.7. Port Traffic Management & Control
      • 4.2.12.8. AR & VR Applications for Port Digitization
      • 4.2.12.9. Unmanned Aerial Inspections of Port Facilities
      • 4.2.12.10. Private Cellular-Enabled Maritime Communications
      • 4.2.12.11. Wireless Ship-to-Shore Connectivity in Nearshore Waters
      • 4.2.12.12. 5G-Facilitated Remote Steering of Unmanned Vessels
    • 4.2.13. Public Safety
      • 4.2.13.1. Mission-Critical PTT Voice Communications
      • 4.2.13.2. Real-Time Video & High-Resolution Imagery
      • 4.2.13.3. Messaging, File Transfer & Presence Services
      • 4.2.13.4. Secure & Seamless Mobile Broadband Access
      • 4.2.13.5. Location-Based Services & Enhanced Mapping
      • 4.2.13.6. Multimedia CAD (Computer-Aided Dispatch)
      • 4.2.13.7. Massive-Scale Video Surveillance & Analytics
      • 4.2.13.8. Smart Glasses & AR Headgear for First Responders
      • 4.2.13.9. 5G-Equipped Police, Firefighting & Rescue Robots
      • 4.2.13.10. 5G MBS/5MBS in High-Density Environments
      • 4.2.13.11. Sidelink-Based Direct Mode Communications
    • 4.2.14. Railways
      • 4.2.14.1. FRMCS (Future Railway Mobile Communication System)
      • 4.2.14.2. Train-to-Ground & Train-to-Train Connectivity
      • 4.2.14.3. Wireless Intra-Train Communications
      • 4.2.14.4. Rail Operations-Critical Voice, Data & Video Services
      • 4.2.14.5. ATO (Automatic Train Operation) & Traffic Management
      • 4.2.14.6. Video Surveillance for Operational Safety & Security
      • 4.2.14.7. Smart Maintenance of Railway Infrastructure
      • 4.2.14.8. Intelligent Management of Logistics Facilities
      • 4.2.14.9. Onboard Broadband Internet Access
      • 4.2.14.10. PIS (Passenger Information Systems)
      • 4.2.14.11. Smart Rail & Metro Station Services
    • 4.2.15. Utilities
      • 4.2.15.1. Multi-Service FANs (Field Area Networks)
      • 4.2.15.2. Critical Applications for Field Workforce Communications
      • 4.2.15.3. AMI (Advanced Metering Infrastructure)
      • 4.2.15.4. DA (Distribution Automation) Systems
      • 4.2.15.5. Microgrid & DER (Distributed Energy Resource) Integration
      • 4.2.15.6. 5G-Enabled VPPs (Virtual Power Plants)
      • 4.2.15.7. Low-Latency SCADA Applications for Utilities
      • 4.2.15.8. Teleprotection of Transmission & Distribution Grids
      • 4.2.15.9. Video Monitoring for Critical Infrastructure Protection
      • 4.2.15.10. Sensor-Based Detection of Water & Gas Leaks
      • 4.2.15.11. AR Information Overlays for Repairs & Maintenance
      • 4.2.15.12. Drone & Robot-Assisted Inspections of Utility Assets
      • 4.2.15.13. Local Wireless Connectivity for Remote & Offshore Facilities
    • 4.2.16. Warehousing & Other Verticals

Chapter 5: Spectrum Availability, Allocation & Usage

  • 5.1. National & Local Area Licensed Spectrum
    • 5.1.1. Low-Band (Sub-1 GHz)
      • 5.1.1.1. 200 - 400 MHz
      • 5.1.1.2. 410 & 450 MHz
      • 5.1.1.3. 600 MHz
      • 5.1.1.4. 700 MHz
      • 5.1.1.5. 800 MHz
      • 5.1.1.6. 900 MHz
    • 5.1.2. Mid-Band (1 - 6 GHz)
      • 5.1.2.1. 1.4 GHz
      • 5.1.2.2. 1.6 GHz
      • 5.1.2.3. 1.7 GHz
      • 5.1.2.4. 1.8 GHz
      • 5.1.2.5. 1.9 GHz
      • 5.1.2.6. 2.1 GHz
      • 5.1.2.7. 2.3 GHz
      • 5.1.2.8. 2.4 GHz
      • 5.1.2.9. 2.5 GHz
      • 5.1.2.10. 2.6 GHz
      • 5.1.2.11. 3.4 GHz
      • 5.1.2.12. 3.5 GHz CBRS PAL Tier
      • 5.1.2.13. 3.7 - 3.8 GHz
      • 5.1.2.14. 3.8 - 4.2 GHz
      • 5.1.2.15. 4.6 - 4.9 GHz
      • 5.1.2.16. Other Bands
    • 5.1.3. Upper Mid-Band (7 - 24 GHz)
      • 5.1.3.1. 7 GHz
      • 5.1.3.2. 10 - 14 GHz
      • 5.1.3.3. 17 - 20 GHz
      • 5.1.3.4. Other Bands
    • 5.1.4. High-Band mmWave (Millimeter Wave)
      • 5.1.4.1. 26 GHz
      • 5.1.4.2. 28 GHz
      • 5.1.4.3. 37 GHz
      • 5.1.4.4. Other Bands
  • 5.2. License-Exempt (Unlicensed) Spectrum
    • 5.2.1. Sub-1 GHz Bands (470 - 790/800/900 MHz)
    • 5.2.2. 1.8 GHz DECT Guard Band
    • 5.2.3. 1.9 GHz sXGP Band
    • 5.2.4. 2.4 GHz (2,400 - 2,483.5 MHz)
    • 5.2.5. 3.5 GHz CBRS GAA Tier
    • 5.2.6. 5 GHz (5,150 - 5,925 MHz)
    • 5.2.7. 6 GHz (5,925 - 7,125 MHz)
    • 5.2.8. 60 GHz (57 - 71 GHz)
    • 5.2.9. Other Bands
  • 5.3. North America
    • 5.3.1. United States
    • 5.3.2. Canada
  • 5.4. Asia Pacific
    • 5.4.1. Australia
    • 5.4.2. New Zealand
    • 5.4.3. China
    • 5.4.4. Hong Kong
    • 5.4.5. Taiwan
    • 5.4.6. Japan
    • 5.4.7. South Korea
    • 5.4.8. Singapore
    • 5.4.9. Malaysia
    • 5.4.10. Indonesia
    • 5.4.11. Philippines
    • 5.4.12. Thailand
    • 5.4.13. Vietnam
    • 5.4.14. Laos
    • 5.4.15. Myanmar
    • 5.4.16. India
    • 5.4.17. Pakistan
    • 5.4.18. Bangladesh
    • 5.4.19. Sri Lanka
    • 5.4.20. Rest of Asia Pacific
  • 5.5. Europe
    • 5.5.1. United Kingdom
      • 5.5.1.1. Great Britain
      • 5.5.1.2. Northern Ireland
    • 5.5.2. Republic of Ireland
    • 5.5.3. France
    • 5.5.4. Germany
    • 5.5.5. Belgium
    • 5.5.6. Netherlands
    • 5.5.7. Switzerland
    • 5.5.8. Austria
    • 5.5.9. Italy
    • 5.5.10. Spain
    • 5.5.11. Portugal
    • 5.5.12. Sweden
    • 5.5.13. Norway
    • 5.5.14. Denmark
    • 5.5.15. Finland
    • 5.5.16. Estonia
    • 5.5.17. Latvia
    • 5.5.18. Lithuania
    • 5.5.19. Czech Republic
    • 5.5.20. Poland
    • 5.5.21. Hungary
    • 5.5.22. Slovenia
    • 5.5.23. Croatia
    • 5.5.24. Turkiye
    • 5.5.25. Cyprus
    • 5.5.26. Greece
    • 5.5.27. Bulgaria
    • 5.5.28. Romania
    • 5.5.29. Moldova
    • 5.5.30. Ukraine
    • 5.5.31. Belarus
    • 5.5.32. Russia
    • 5.5.33. Rest of Europe
  • 5.6. Middle East & Africa
    • 5.6.1. Saudi Arabia
    • 5.6.2. United Arab Emirates
    • 5.6.3. Qatar
    • 5.6.4. Oman
    • 5.6.5. Bahrain
    • 5.6.6. Kuwait
    • 5.6.7. Iraq
    • 5.6.8. Jordan
    • 5.6.9. Israel
    • 5.6.10. Egypt
    • 5.6.11. Algeria
    • 5.6.12. Morocco
    • 5.6.13. Tunisia
    • 5.6.14. South Africa
    • 5.6.15. Botswana
    • 5.6.16. Zambia
    • 5.6.17. Angola
    • 5.6.18. Kenya
    • 5.6.19. Ethiopia
    • 5.6.20. Angola
    • 5.6.21. Republic of the Congo
    • 5.6.22. Gabon
    • 5.6.23. Nigeria
    • 5.6.24. Uganda
    • 5.6.25. Ghana
    • 5.6.26. Senegal
    • 5.6.27. Rest of the Middle East & Africa
  • 5.7. Latin & Central America
    • 5.7.1. Brazil
    • 5.7.2. Mexico
    • 5.7.3. Argentina
    • 5.7.4. Colombia
    • 5.7.5. Chile
    • 5.7.6. Peru
    • 5.7.7. Ecuador
    • 5.7.8. Bolivia
    • 5.7.9. Dominican Republic
    • 5.7.10. Bardados
    • 5.7.11. Trinidad & Tobago
    • 5.7.12. Suriname
    • 5.7.13. Rest of Latin & Central America

Chapter 6: Standardization, Regulatory & Collaborative Initiatives

  • 6.1. 3GPP (Third Generation Partnership Project)
    • 6.1.1. Releases 11-14: 3GPP-Based Critical Communications Features
    • 6.1.2. Release 15: 5G eMBB, Network Slicing, Improvements for MTC/IoT & MCX Extensions
    • 6.1.3. Release 16: 3GPP Support for NPNs, 5G URLLC, TSN, NR-U & Vertical Application Enablers
    • 6.1.4. Release 17: NPN Enhancements, Edge Computing, TSC, Expansion of IIoT Features, RedCap & NTN Connectivity
    • 6.1.5. Release 18: 5G-Advanced, Further NPN Refinements, DetNet, Intelligent Automation, Spectrum Flexibility & eRedCap
    • 6.1.6. Release 19 & Beyond: 5G NR Femto Architecture, MWAB, IOPS Over 5G, ProSe in NPNs, Ambient IoT & Regenerative NTN
  • 6.2. 450 MHz Alliance
    • 6.2.1. Promoting 3GPP Technologies in the 380 - 470 MHz Frequency Range
  • 6.3. 5G-ACIA (5G Alliance for Connected Industries and Automation)
    • 6.3.1. Maximizing the Applicability of 5G Technology in the Industrial Domain
  • 6.4. 5GAIA (5G Applications Industry Array)
    • 6.4.1. Advancing the Development of China's 5G Applications Industry
  • 6.5. 5G Campus Network Alliance
    • 6.5.1. Supporting the Market Development of 5G Campus Networks in Germany
  • 6.6. 5GDNA (5G Deterministic Networking Alliance)
    • 6.6.1. Industry Collaboration & Promotion of 5GDN (5G Deterministic Networking)
  • 6.7. 5GFF (5G Future Forum)
    • 6.7.1. Accelerating the Delivery of 5G MEC (Multi-Access Edge Computing) Solutions
  • 6.8. 5G Forum (South Korea)
    • 6.8.1. Expanding Convergence Between 5G Technology & Vertical Industries
  • 6.9. 5G Health Association
    • 6.9.1. Interfacing 5G-Based Connectivity & Healthcare Applications
  • 6.10. 5G-MAG (5G Media Action Group)
    • 6.10.1. 5G-Based NPNs in Media Production
  • 6.11. 5GMF (Fifth Generation Mobile Communication Promotion Forum, Japan)
    • 6.11.1. Initiatives Related to Local 5G Networks in Japan
  • 6.12. 5G-OT Alliance
    • 6.12.1. Accelerating Private LTE/5G Adoption in OT (Operational Technology) Environments
  • 6.13. 5GSA (5G Slicing Association)
    • 6.13.1. Addressing Vertical Industry Requirements for 5G Network Slicing
  • 6.14. 6G-IA (6G Smart Networks and Services Industry Association)
    • 6.14.1. Private 5G-Related Projects & Activities
  • 6.15. AGURRE (Association of Major Users of Operational Radio Networks, France)
    • 6.15.1. Spectrum Access, Regulatory Framework & Industrial Ecosystem for Private Mobile Networks
  • 6.16. APCO (Association of Public-Safety Communications Officials) International
    • 6.16.1. Public Safety LTE/5G-Related Advocacy Efforts
  • 6.17. ATIS (Alliance for Telecommunications Industry Solutions)
    • 6.17.1. Deployment & Operational Requirements of 5G-Based NPNs
    • 6.17.2. Shared HNI & IBN Administration for CBRS Spectrum
    • 6.17.3. Other Private LTE & 5G-Related Initiatives
  • 6.18. BEREC (Body of European Regulators for Electronic Communications)
    • 6.18.1. Private 5G-Related Consultations & Analysis for European NRAs (National Regulatory Authorities)
  • 6.19. BTG (Dutch Association of Large-Scale ICT & Telecommunications Users)
    • 6.19.1. KMBG (Dutch Critical Mobile Broadband Users) Expert Group
  • 6.20. B-TrunC (Broadband Trunking Communication) Industry Alliance
    • 6.20.1. B-TrunC Standard for LTE-Based Critical Communications
  • 6.21. CAMET (China Association of Metros)
    • 6.21.1. Adoption of 3GPP Networks for Urban Rail Transit Systems
    • 6.21.2. LTE-M (LTE Metro Communications System) Standard
    • 6.21.3. Public-Private 5G Network Series of Specifications
  • 6.22. CEPT (European Conference of Postal and Telecommunications Administrations)
    • 6.22.1. Common Spectrum Policies for Local 4G/5G, PPDR Broadband & FRMCS
  • 6.23. DSA (Dynamic Spectrum Alliance)
    • 6.23.1. Promoting Unlicensed & Dynamic Access to Spectrum
  • 6.24. Electricity Canada (Canadian Electricity Association)
    • 6.24.1. PVNO & Dedicated Spectrum for Smart Grid Communications
  • 6.25. ENTELEC (Energy Telecommunications and Electrical Association)
    • 6.25.1. Policy Advocacy & Other Private LTE/5G-Related Activities
  • 6.26. EPRI (Electric Power Research Institute)
    • 6.26.1. Research & Guidelines in Support of 3GPP-Based Utility Communications
  • 6.27. ERA (European Union Agency for Railways)
    • 6.27.1. Evolution of Railway Radio Communication Project
  • 6.28. ETSI (European Telecommunications Standards Institute)
    • 6.28.1. Technical Specifications for FRMCS, PPDR Broadband, MCX & TETRA-3GPP Interworking
    • 6.28.2. Other Work Relevant to Private LTE & 5G Networks
  • 6.29. EU-Rail (Europe's Rail Joint Undertaking)
    • 6.29.1. FRMCS-Related Research & Innovation Activities
  • 6.30. EUTC (European Utilities Telecom Council)
    • 6.30.1. Addressing LTE & 5G-Related Requirements for European Utilities
  • 6.31. EUWENA (European Users of Enterprise Wireless Networks Association)
    • 6.31.1. Catalyzing the Wider Adoption of 3GPP-Based Private Networks
  • 6.32. EWA (Enterprise Wireless Alliance)
    • 6.32.1. Supporting the Private Wireless Industry in the United States
  • 6.33. free5GC
    • 6.33.1. Open-Source 5GC Software
  • 6.34. GSA (Global Mobile Suppliers Association)
    • 6.34.1. Advocacy for Private Mobile Networks
  • 6.35. GSMA (GSM Association)
    • 6.35.1. Guidelines for 5G Private & Dedicated Networks
  • 6.36. GUTMA (Global UTM Association)
    • 6.36.1. ACJA (Aerial Connectivity Joint Activity) Initiative
  • 6.37. ITU (International Telecommunication Union)
    • 6.37.1. International & Regional Harmonization of LTE/5G Spectrum
    • 6.37.2. Defining the Role of IMT-2020 to Support Vertical Applications
  • 6.38. JOTS (Joint Operators Technical Specification) Forum
    • 6.38.1. NHIB (Neutral Host In-Building) Specification
  • 6.39. JRC (Joint Radio Company)
    • 6.39.1. Supporting LTE/5G-Based Smart Grid Initiatives
  • 6.40. KRRI (Korea Railroad Research Institute)
    • 6.40.1. Functional Testing & Certification of LTE-R (LTE-Based Railway Communications)
  • 6.41. LF (Linux Foundation)
    • 6.41.1. Magma Mobile Core Software Platform
    • 6.41.2. LF Networking's 5G Super Blueprint
    • 6.41.3. LF Edge's Akraino Private LTE/5G ICN (Integrated Cloud-Native) Blueprint
    • 6.41.4. Other Projects Relevant to Private LTE & 5G Networks
  • 6.42. MFA (Alliance for Private Networks)
    • 6.42.1. Uni5G Technology Blueprints for Private 5G Networks
    • 6.42.2. Network Identifier Program Supporting Private & Neutral Host Networks
    • 6.42.3. MulteFire Specifications: LTE Operation in Unlicensed Spectrum
    • 6.42.4. Certification Program for MulteFire Equipment
    • 6.42.5. MulteFire OSU (Online Sign-Up) System
  • 6.43. MSSA (Mobile Satellite Services Association)
    • 6.43.1. Advancing the Global Direct-to-Device NTN Ecosystem
  • 6.44. NGA (Next G Alliance)
    • 6.44.1. Building the Foundation for North American Leadership in 6G
  • 6.45. NGMN (Next-Generation Mobile Networks) Alliance
    • 6.45.1. Work Related to Private 5G & Network Slicing
  • 6.46. NSC (National Spectrum Consortium)
    • 6.46.1. Enhancing Spectrum Superiority & 5G Capabilities for Federal Users
  • 6.47. OCP (Open Compute Project) Foundation
    • 6.47.1. Initiatives Aimed at Open Designs for Telco Hardware
  • 6.48. one6G Association
    • 6.48.1. Driving 6G Innovation & Development Across Vertical Industries
  • 6.49. ONF (Open Networking Foundation)
    • 6.49.1. Aether Private 5G Connected Edge Platform
    • 6.49.2. SD-RAN, SD-Core, OMEC & Other Relevant Projects
  • 6.50. OnGo Alliance
    • 6.50.1. Promoting 4G & 5G OnGo Wireless Network Technology
    • 6.50.2. Technical Specifications & Guidelines for 4G/5G-Based CBRS Networks
    • 6.50.3. Product Certification Program Supporting Multi-Vendor Interoperability
  • 6.51. OPC Foundation
    • 6.51.1. OPC UA (Unified Architecture) Over 5G for Industry 4.0 Applications
  • 6.52. Open RAN Policy Coalition
    • 6.52.1. Promoting Policies to Drive the Adoption of Open RAN
  • 6.53. Open5GCore
    • 6.53.1. Vendor-Independent 5GC Implementation
  • 6.54. Open5GS & NextEPC
    • 6.54.1. Open-Source 5GC & EPC Software
  • 6.55. OpenInfra (Open Infrastructure) Foundation
    • 6.55.1. StarlingX Software Stack for Ultra-Low Latency Edge Applications
    • 6.55.2. OpenStack Cloud Software & Other Projects
  • 6.56. O-RAN Alliance
    • 6.56.1. O-RAN Architecture Specifications
    • 6.56.2. O-RAN SC (Software Community)
    • 6.56.3. Testing & Integration Support
  • 6.57. OSA (OpenAirInterface Software Alliance)
    • 6.57.1. OAI (OpenAirInterface) 5G RAN, Core & MOSAIC5G Projects
  • 6.58. PIA (PSBN Innovation Alliance)
    • 6.58.1. PSBN (Public Safety Broadband Network) Governance in Canada's Ontario Province
  • 6.59. PMeV (German Professional Mobile Radio Association)
    • 6.59.1. Professional Broadband & 5G Campus Network-Related Activities
  • 6.60. PSBTA (Public Safety Broadband Technology Association)
    • 6.60.1. Public Safety LTE/5G-Related Activities
  • 6.61. PSCE (Public Safety Communication Europe)
    • 6.61.1. Public Safety Broadband-Related Standardization Activities
    • 6.61.2. BroadX Projects: Pan-European Interoperable Mobile Broadband System for Public Safety
  • 6.62. Safe-Net Forum
    • 6.62.1. Technical & Policy Guidance for 3GPP-Based Critical Communications Networks
  • 6.63. SCF (Small Cell Forum)
    • 6.63.1. Reference Blueprints for Private 5G Networks
    • 6.63.2. Neutral Hosting, Edge Computing & Other Relevant Work
  • 6.64. Seamless Air Alliance
    • 6.64.1. Leading Global Standards for Inflight Connectivity
  • 6.65. SimpleRAN
    • 6.65.1. Ensuring Interoperability & Transparency in the vRAN (Virtualized RAN) Ecosystem
  • 6.66. srsRAN Project
    • 6.66.1. Open-Source 4G & 5G Software Suites
  • 6.67. TCA (Trusted Connectivity Alliance)
    • 6.67.1. 5G SIM/eSIM Recommendations for Private Networks
  • 6.68. TCCA (The Critical Communications Association)
    • 6.68.1. BIG (Broadband Industry Group)
    • 6.68.2. CCBG (Critical Communications Broadband Group)
    • 6.68.3. IWF Working Group
    • 6.68.4. SCADA, Smart Grid & IoT Group
    • 6.68.5. Future Technologies Group
  • 6.69. techUK
    • 6.69.1. SPF (Spectrum Policy Forum)
  • 6.70. TIA (Telecommunications Industry Association)
    • 6.70.1. Defining Requirements for LMR-3GPP Interworking & Critical Broadband Capabilities
  • 6.71. TIP (Telecom Infra Project)
    • 6.71.1. 5G Private Networks Solution Group
    • 6.71.2. NHIS (Neutral Host & Infra Sharing) Project Group
    • 6.71.3. Neutral Host NaaS Solution Group
    • 6.71.4. OpenRAN & Open Core Network Groups
    • 6.71.5. Other Relevant Product & Solution Groups
  • 6.72. TIWA (The In-Building Wireless Association)
    • 6.72.1. Bridging Commercial Real Estate Development With Wireless Technology
  • 6.73. TTA (Telecommunications Technology Association, South Korea)
    • 6.73.1. Standardization Efforts for 3GPP-Based Public Safety, Railway & Maritime Communications
  • 6.74. U.S. NIST (National Institute of Standards and Technology)
    • 6.74.1. Public Safety Broadband & 5G-Related R&D Initiatives
  • 6.75. U.S. NPSTC (National Public Safety Telecommunications Council)
    • 6.75.1. Leadership for LMR-3GPP Interworking & Public Safety Broadband Communications
  • 6.76. U.S. NTIA (National Telecommunications and Information Administration)
    • 6.76.1. Wireless Innovation & Supply Chain Security
  • 6.77. UBBA (Utility Broadband Alliance)
    • 6.77.1. Championing the Advancement of Private Broadband Networks for Utilities
  • 6.78. UIC (International Union of Railways)
    • 6.78.1. FRMCS Program for the Replacement of GSM-R Networks
  • 6.79. UK5G Innovation Network
    • 6.79.1. Promoting Private 5G Adoption Projects, Testbeds & Trials
  • 6.80. UNIFE (The European Rail Supply Industry Association)
    • 6.80.1. UNITEL Committee: Development & Implementation of FRMCS
  • 6.81. UTC (Utilities Technology Council)
    • 6.81.1. Private LTE & 5G-Related Advocacy, Technology Development & Policy Efforts
  • 6.82. UTCAL (Utilities Telecom & Technology Council America Latina)
    • 6.82.1. Promoting Private LTE & 5G Networks for Latin American Utilities
  • 6.83. VDMA (German Mechanical and Plant Engineering Association)
    • 6.83.1. Guidelines for 5G in Mechanical & Plant Engineering
  • 6.84. WBA (Wireless Broadband Alliance)
    • 6.84.1. 5G & Wi-Fi Convergence in Private 5G Networks
    • 6.84.2. OpenRoaming for Private LTE/5G
  • 6.85. WhiteSpace Alliance
    • 6.85.1. Promoting the Use of 3GPP, IEEE & IETF Standards for TVWS Spectrum
  • 6.86. WInnForum (Wireless Innovation Forum)
    • 6.86.1. CBRS Standards for the Implementation of FCC Rulemaking
    • 6.86.2. 6 GHz Unlicensed Sharing & Other Committees
  • 6.87. XGP (eXtended Global Platform) Forum
    • 6.87.1. Development & Promotion of the sXGP Unlicensed LTE Service
  • 6.88. Others
    • 6.88.1. Vendor-Led Private LTE/5G Alliances
    • 6.88.2. National Government Agencies & Regulators
    • 6.88.3. Regional & Country-Specific Associations
    • 6.88.4. Global Industry Initiatives & Organizations

Chapter 7: Review of Private LTE/5G Installations Worldwide

  • 7.1. North America
    • 7.1.1. United States
    • 7.1.2. Canada
  • 7.2. Asia Pacific
    • 7.2.1. Australia
    • 7.2.2. New Zealand
    • 7.2.3. China
    • 7.2.4. Hong Kong
    • 7.2.5. Taiwan
    • 7.2.6. Japan
    • 7.2.7. South Korea
    • 7.2.8. Singapore
    • 7.2.9. Malaysia
    • 7.2.10. Indonesia
    • 7.2.11. Papua New Guinea
    • 7.2.12. Philippines
    • 7.2.13. Thailand
    • 7.2.14. Vietnam
    • 7.2.15. Laos
    • 7.2.16. Myanmar
    • 7.2.17. India
    • 7.2.18. Pakistan
    • 7.2.19. Sri Lanka
    • 7.2.20. Bangladesh
    • 7.2.21. Rest of Asia Pacific
  • 7.3. Europe
    • 7.3.1. United Kingdom
    • 7.3.2. Republic of Ireland
    • 7.3.3. France
    • 7.3.4. Germany
    • 7.3.5. Belgium
    • 7.3.6. Luxembourg
    • 7.3.7. Netherlands
    • 7.3.8. Switzerland
    • 7.3.9. Austria
    • 7.3.10. Italy
    • 7.3.11. Spain
    • 7.3.12. Portugal
    • 7.3.13. Sweden
    • 7.3.14. Norway
    • 7.3.15. Denmark
    • 7.3.16. Finland
    • 7.3.17. Estonia
    • 7.3.18. Latvia
    • 7.3.19. Lithuania
    • 7.3.20. Czech Republic
    • 7.3.21. Poland
    • 7.3.22. Hungary
    • 7.3.23. Slovakia
    • 7.3.24. Slovenia
    • 7.3.25. Croatia
    • 7.3.26. Turkiye
    • 7.3.27. Cyprus
    • 7.3.28. Greece
    • 7.3.29. Bulgaria
    • 7.3.30. Romania
    • 7.3.31. Serbia
    • 7.3.32. Kosovo
    • 7.3.33. Moldova
    • 7.3.34. Ukraine
    • 7.3.35. Belarus
    • 7.3.36. Russia
    • 7.3.37. Rest of Europe
  • 7.4. Middle East & Africa
    • 7.4.1. Saudi Arabia
    • 7.4.2. United Arab Emirates
    • 7.4.3. Qatar
    • 7.4.4. Oman
    • 7.4.5. Bahrain
    • 7.4.6. Kuwait
    • 7.4.7. Iraq
    • 7.4.8. Jordan
    • 7.4.9. Lebanon
    • 7.4.10. Israel
    • 7.4.11. Egypt
    • 7.4.12. Algeria
    • 7.4.13. Morocco
    • 7.4.14. Tunisia
    • 7.4.15. South Africa
    • 7.4.16. Botswana
    • 7.4.17. Zimbabwe
    • 7.4.18. Zambia
    • 7.4.19. Mozambique
    • 7.4.20. Kenya
    • 7.4.21. Ethiopia
    • 7.4.22. Somalia
    • 7.4.23. Madagascar
    • 7.4.24. Mauritius
    • 7.4.25. Seychelles
    • 7.4.26. Angola
    • 7.4.27. Republic of the Congo
    • 7.4.28. Gabon
    • 7.4.29. Central African Republic
    • 7.4.30. Cameroon
    • 7.4.31. Nigeria
    • 7.4.32. Uganda
    • 7.4.33. Ghana
    • 7.4.34. Cote d'Ivoire
    • 7.4.35. Mali
    • 7.4.36. Senegal
    • 7.4.37. Rest of the Middle East & Africa
  • 7.5. Latin & Central America
    • 7.5.1. Brazil
    • 7.5.2. Mexico
    • 7.5.3. Argentina
    • 7.5.4. Uruguay
    • 7.5.5. Colombia
    • 7.5.6. Chile
    • 7.5.7. Peru
    • 7.5.8. Venezuela
    • 7.5.9. Ecuador
    • 7.5.10. Bolivia
    • 7.5.11. Dominican Republic
    • 7.5.12. Jamaica
    • 7.5.13. Barbados
    • 7.5.14. Trinidad & Tobago
    • 7.5.15. Dutch Caribbean
    • 7.5.16. Guyana
    • 7.5.17. Suriname
    • 7.5.18. Rest of Latin & Central America

Chapter 8: Private LTE/5G Case Studies

  • 8.1. 450connect: Nationwide 450 MHz LTE Network for the Digitization of German Energy & Water Utilities
  • 8.2. ABP (Associated British Ports): Shared Access License-Enabled Private 5G Network for Port of Southampton
  • 8.3. ADF (Australian Defence Force): Revamping Military Training Facilities With Private Cellular Networks
  • 8.4. Adif (Spanish Railway Infrastructure Administrator): Private 5G Infrastructure for Strategic Logistics Terminals
  • 8.5. ADNOC (Abu Dhabi National Oil Company): Private 5G Network for Remote Onshore & Offshore Connectivity
  • 8.6. Agnico Eagle Mines: Streamlining Mining Operations With Industrial-Grade Private 4G/5G Networks
  • 8.7. Airbus: Multi-Campus Private 5G Network for Global Aircraft Manufacturing Facilities
  • 8.8. Ameren: 900 MHz Private Communications Network for Grid Modernization
  • 8.9. ANA (All Nippon Airways): Local 5G-Enabled Digital Transformation of Aviation Training
  • 8.10. APM Terminals (Maersk): Optimizing Port & Terminal Logistics With Private 5G Networks
  • 8.11. Aramco Digital: Nationwide 450 MHz 5G-Ready Network for 50 Industrial Zones
  • 8.12. ArcelorMittal: 5G Steel Project for Industrial Digitization & Automation
  • 8.13. ASE Group: 28 GHz mmWave 5G Network for Semiconductor Manufacturing
  • 8.14. ASN (Alcatel Submarine Networks): Private 5G Networks for Calais & Greenwich Production Sites
  • 8.15. ASTRID: BLM (Blue Light Mobile) Secure MVNO Service for Belgian First Responders
  • 8.16. Australian Grand Prix Corporation: Private 5G Network for Albert Park Circuit
  • 8.17. BAM Nuttall: Accelerating Innovation at Construction Sites With Private 5G Networks
  • 8.18. Barcelona Port Authority: Standalone Private 5G Network for 500 Tenant Companies
  • 8.19. BASF: 5G Campus Networks for Real-Time Wireless Connectivity in Chemical Production Sites
  • 8.20. BBC (British Broadcasting Corporation): Portable 5G-Based NPN Solution for News Contribution
  • 8.21. BHP: Transitioning From Private LTE to Standalone 5G Networks for Advanced Digitization & Automation
  • 8.22. BlackRock: On-Premise Private 5G Network Installation for New York Global Headquarters
  • 8.23. BMW Group: Private 5G Networks for Autonomous Intralogistics in Production Plants
  • 8.24. Boston Children's Hospital: Scalable Hybrid Public-Private 5G Network for Connected Healthcare
  • 8.25. Brazilian Army: Leveraging Private LTE Infrastructure for National Defense Applications
  • 8.26. Bundeswehr (German Armed Forces): ZNV (Deployable Cellular Networks) Program
  • 8.27. Cal Poly (California Polytechnic State University): Converged Public-Private 5G Network
  • 8.28. China National Coal Group: Multi-Band 700 MHz & 2.6 GHz Private 5G Network for Dahaize Coal Mine
  • 8.29. City of Brownsville: Municipal Private 5G Network for Residents, Businesses & Public Services
  • 8.30. CJ Logistics: Bolstering Fulfillment Center Productivity Using Private 5G Network
  • 8.31. Cleveland Clinic: Private 5G Network for Mentor Hospital & Main Campus
  • 8.32. Cologne Bonn Airport: Revolutionizing Internal Operations With Private 5G Campus Network
  • 8.33. COMAC (Commercial Aircraft Corporation of China): 5G-Connected Intelligent Aircraft Manufacturing Factories
  • 8.34. ConocoPhillips: Private LTE Network for Curtis Island LNG (Liquefied Natural Gas) Facility
  • 8.35. Crystal Palace Football Club: Unlocking Accessibility for Visually Impaired Fans With Private 5G Network
  • 8.36. CSG (China Southern Power Grid): Harnessing Private Cellular Systems & 5G Network Slicing for Smart Grid Operations
  • 8.37. Cummins: Combined Neutral Host System & Private 5G Network for JEP (Jamestown Engine Plant)
  • 8.38. DB (Deutsche Bahn): Digitizing & Automating Rail Operations With 5G Campus Networks & FRMCS-Ready Cell Sites
  • 8.39. Delta Electronics: Private 5G Networks for Manufacturing Facilities in Taiwan & Thailand
  • 8.40. District of Ban Chang: 26 GHz mmWave Private 5G Network for Smart City Services
  • 8.41. Dongyi Group Coal Gasification Company: Hybrid Public-Private Network for Xinyan Coal Mine
  • 8.42. Dow: Modernizing Chemical Plant Maintenance With Private Cellular Networks
  • 8.43. EAN (European Aviation Network): Hybrid Satellite-A2G Network for Inflight Broadband
  • 8.44. East West Railway Company: ECH-R (England's Connected Heartland Railways) Project
  • 8.45. Edesur Dominicana: Custom-Built 2.3 GHz LTE Network for Critical Grid Communications
  • 8.46. EDF: Private Mobile Networks for Enhanced Connectivity at Nuclear Power Plants & Wind Farms
  • 8.47. EHIME CATV: Gigabit-Grade FWA Service Using 28 GHz Local 5G Network
  • 8.48. Enel: Global 3GPP-Based Private Wireless Communications Platform for Utility Communications
  • 8.49. Equinor: 5G Coverage Upgrade for Offshore Platforms in the North Sea
  • 8.50. ESB Networks: 410 MHz National Radio Access Network for Smart Grid Applications
  • 8.51. ESN (Emergency Services Network): Great Britain's Critical Communications Broadband System
  • 8.52. Estonian Ministry of Defense: Private 5G Network for CR14 (Cyber Range 14)
  • 8.53. EUROGATE: 5G Campus Networks for the Digitization of Port Logistics
  • 8.54. Evergy: Facilitating Grid Modernization With Private Broadband Network
  • 8.55. EWA (Electricity and Water Authority, Bahrain): 410 MHz Private LTE Network
  • 8.56. EWG (East-West Gate) Intermodal Terminal: Private 5G Network for Smart Railway Logistics
  • 8.57. Ferrovial: Standalone Private 5G Network for Silvertown Tunnel Project
  • 8.58. FirstNet (First Responder Network): United States' Nationwide Public Safety Broadband Network
  • 8.59. Fiskarheden: Local 3.7 GHz License-Based Private 5G Network for Transtrand Sawmill
  • 8.60. Ford Motor Company: Private 5G for Streamlining Engine Manufacturing & Electric Vehicle Production Operations
  • 8.61. Frankfurt University Hospital: Dedicated 5G Network for Secure Medical Messaging & Remote Diagnostics
  • 8.62. Fraport: Private 5G Campus Network for Future-Oriented Operations at Frankfurt Airport
  • 8.63. Fujitsu: Japan's First 5G Network Installation Based on 28 GHz Local 5G Spectrum
  • 8.64. Gale South Beach Hotel: CBRS Network for Guest Engagement & Hotel Operations
  • 8.65. Gerdau: Private 5G Networks for Ouro Branco Steel Production Plant & Miguel Burnier Iron Ore Mine
  • 8.66. Gogo Business Aviation: 5G A2G Wireless Network for Inflight Connectivity
  • 8.67. Gold Fields: Enabling Surface & Underground Communications With LTE Networks
  • 8.68. Groupe ADP: 3GPP-Based Private Mobile Network for Paris Airports
  • 8.69. Guangzhou Metro: 5G + Smart Metro Project for Urban Rail Transit
  • 8.70. Hamburger Containerboard (Prinzhorn Group): 5G Campus Networks for Paper Mills
  • 8.71. Hanshin Electric Railway: Capitalizing on Local 5G for Safer & Efficient Railway Operations
  • 8.72. Heathrow Commercial Telecoms: WAMD (Wide Area Mobile Data) Network
  • 8.73. Helios Park Hospital: Enhancing Medical System Efficiency With Standalone 5G Campus Network
  • 8.74. Hip Hing Engineering: Dedicated 5G Network for Kai Tak Sports Park
  • 8.75. Hiroshima Gas: Local 5G-Powered Safety Operations at Hatsukaichi LNG Terminal
  • 8.76. HKIA (Hong Kong International Airport): 28 GHz Public-Private 5G Infrastructure Project
  • 8.77. Hoban Construction: 4.7 GHz Private 5G Network for Apartment Complex Worksite
  • 8.78. Hsinchu City Fire Department: Satellite-Backhauled Private 5G Network for PPDR Communications
  • 8.79. Hutchison Ports: Driving the Digitization & Automation of Ports Through Private 5G Networks
  • 8.80. Hyundai Motor Group: Standalone Private 5G Networks for Ulsan & HMGMA Plants
  • 8.81. iNET (Infrastructure Networks): Private 4G/5G-Ready Network for Remote Industrial Connectivity
  • 8.82. Inventec Corporation: Standalone Private 5G Network for Taoyuan Guishan Plant
  • 8.83. IRFU (Irish Rugby Football Union): Enabling Fast In-Play Data Analysis With Private 5G Network
  • 8.84. Jacto: Private 5G Network for Paulopolis Agricultural Machinery Manufacturing Plant
  • 8.85. JBG SMITH Properties: National Landing Private 5G Infrastructure Platform
  • 8.86. JD Logistics: Migrating AGV Communications From Wi-Fi to Private 5G Networks
  • 8.87. JLR (Jaguar Land Rover): Private 5G Network for Solihull Plant
  • 8.88. John Deere: Employing Private 5G Networks to Unshackle Industrial Facilities From Cables
  • 8.89. Kansai Electric Power: Enhancing Power Station & Wind Farm Maintenance Using Local 5G Networks
  • 8.90. Kaohsiung City Police Department: Sliced Private 5G Network for Smart Patrol Cars
  • 8.91. Kawasaki Heavy Industries: Connecting Smart Factory Robotics With Local 5G Technology
  • 8.92. KEPCO (Korea Electric Power Corporation): Private 5G Networks for Substations & Power Plants
  • 8.93. KR (Korea National Railway): LTE-R (LTE-Based Railway Communications) Network
  • 8.94. Kumagai Gumi: Unleashing the Potential of Unmanned Construction Using Local 5G Networks
  • 8.95. Kyushu Electric Power: Hybrid Local 5G & Wi-Fi Networks for Power Plants
  • 8.96. Latvian Ministry of Defense: Camp Adazi 5G Testbed for Defense Innovations
  • 8.97. LCRA (Lower Colorado River Authority): 5G-Ready Broadband Network for Mission-Critical Applications
  • 8.98. Lishui Municipal Emergency Management: 5G-Enabled Natural Disaster Management System
  • 8.99. Liverpool 5G Create Project: Standalone Private 5G Network for Digital Health, Education & Social Care
  • 8.100. local2u: Private Cellular Network for Hybrid Fixed Wireless & Mobility Service
  • 8.101. Lufthansa Group: Industrial-Grade 5G Campus Networks for Engine Shops & Cargo Facilities
  • 8.102. Mercedes-Benz Group: World's First 5G Campus Network for Automotive Production
  • 8.103. Midea Group: 5G-Connected Factories for Washing Machine Manufacturing
  • 8.104. Mitsubishi Electric: Local 5G-Based Industrial Wireless System for Factory Automation
  • 8.105. Murray City School District: LTE-Based Private CBRS Network for K-12 Education
  • 8.106. Nanjing Municipal Government: 1.4 GHz Broadband GRN (Government Radio Network)
  • 8.107. Narita International Airport: Local 5G Network for Self-Driving Shuttle Buses & Critical Communications
  • 8.108. Navantia: Digital Transformation of Shipyard Operations Using Dedicated 5G Infrastructure & Edge Computing
  • 8.109. NCRTC (National Capital Region Transport Corporation): Private LTE Network for ETCS Level 2 Signaling
  • 8.110. NEC Corporation: Improving Production Efficiency With Local 5G-Connected Autonomous Transport System
  • 8.111. Nedaa: Dubai's Mission-Critical LTE & 5G-Ready Network for Professional Communications
  • 8.112. New York City Subway's Crosstown Line: 4.9 GHz Private 5G Network for CBTC Operations
  • 8.113. Newmont Corporation: Smarter, Safer & Sustainable Gold Mining With Private 5G Technology
  • 8.114. NLMK Group: Digitizing Steel Production & Mining Operations With Private Wireless Networks
  • 8.115. Norwegian Armed Forces: Defense-Specific Network Slices & Tactical Private 5G Systems
  • 8.116. Nutrien: Private Cellular Infrastructure for Improved Safety & Productivity in Underground Potash Mines
  • 8.117. Ocado: 4G-Based Wireless Control System for Warehouse Automation
  • 8.118. Ooredoo: Purpose-Built LTE Network for Qatar's Oil & Gas Industry
  • 8.119. orsted: Boosting Offshore Wind Farm Safety & Efficiency With Private Cellular Networks
  • 8.120. OYS (Oulu University Hospital): Transforming Patient Care With Standalone Private 5G Network
  • 8.121. PCK Raffinerie: Accelerating Oil Refinery Digitization With 5G Campus Network
  • 8.122. Petrobras (Petroleo Brasileiro): Private Cellular Connectivity for Offshore Platforms & Production Sites
  • 8.123. PGE Systemy: 450 MHz Mission-Critical LTE Network for Polish Electricity & Gas DSOs
  • 8.124. Port of Tyne: Advancing Smart Port Transformation With Private 5G Network
  • 8.125. Port of Valencia: 2.3 GHz Standalone Private 5G Network for Police Surveillance & Remote Maintenance
  • 8.126. Portuguese Navy: Offshore 5G Bubble for REPMUS Experimentation Exercise
  • 8.127. POSCO: Leveraging Private 5G to Link Autonomous Locomotives & Railway Control Systems
  • 8.128. PSA International: Dedicated 5G Networks for Container Terminal Operations
  • 8.129. PTA (Public Transport Authority of Western Australia): Radio Systems Replacement Project
  • 8.130. Ricoh: Embracing Digital Innovation in Production Operations With Local 5G Networks
  • 8.131. Robert Bosch: Automating & Digitizing Manufacturing Facilities With Private 5G Networks
  • 8.132. Roularta Media Group: Digitally Transforming Printing Facilities With Private 5G Technology
  • 8.133. Royal Thai Police: 800 MHz Public Safety LTE Network for Secure Communications
  • 8.134. RRF (Radio Network of the Future): France's National Mission-Critical Broadband Network
  • 8.135. RTL Deutschland: Multi-Site Private 5G Network for TV Production
  • 8.136. Rudin Management Company: Neutral Host CBRS Network for Multi-Tenant Office Building
  • 8.137. Safe-Net: South Korea's National Disaster Safety Communications Network
  • 8.138. Santee Sioux Nation: 2.5 GHz Private LTE Network for Tribal Broadband
  • 8.139. Santos: Wireless to the Wellhead Private LTE Project
  • 8.140. Sao Martinho: Pioneering Smart Agribusiness Innovations With Private 5G Networks
  • 8.141. SCA (Svenska Cellulosa Aktiebolaget): Local 5G Connectivity for Timber Terminals & Paper Mills
  • 8.142. SCE (Southern California Edison): U.S. Electric Utility Industry's First Private 5G FAN for Grid Modernization
  • 8.143. SDG&E (San Diego Gas & Electric): pLTE (Private LTE) Network for Advanced Safety & Protection Technologies
  • 8.144. Seaboard Marine: Private Cellular Network Solution for Real-Time Cargo Vessel Monitoring
  • 8.145. SGCC (State Grid Corporation of China): Sliced Public-Private 5G & 5.8 GHz Private NR-U Networks
  • 8.146. SGP (Societe du Grand Paris): Private LTE Network for the Grand Paris Express Rapid Transit System
  • 8.147. Shanghai Shentong Metro Group: China's Largest Hybrid Public-Private 5G Network for Urban Rail Transport
  • 8.148. Shenzhen Metro: 3GPP Connectivity for Operations-Critical Railway Communications
  • 8.149. Siemens: Independently Developed Private 5G Infrastructure for Industry 4.0 Applications
  • 8.150. Sinopec (China Petroleum & Chemical Corporation): 5G + Smart Petrochemical Project
  • 8.151. SIRDEE: Spain's Mission-Critical Broadband Network for Public Safety Organizations
  • 8.152. SMC (Samsung Medical Center): On-Premise Private 5G Network for Medical Education
  • 8.153. Snam: Hybrid 5G MPN (Mobile Private Network) for 23 Plants
  • 8.154. SNCF (French National Railways): Enabling Rail Innovations With 5G Technology
  • 8.155. South Korean MND (Ministry of National Defense): Private 5G Network Project for Unmanned & Remote Operations
  • 8.156. Southern Linc: CriticalLinc LTE Network for Utilities, Government & Business Customers
  • 8.157. Spanish Army: Standalone Private 5G Networks for Maintenance & Logistics Centers
  • 8.158. Subaru Corporation: Advancing Cooperative Driving Automation With Bifuka Proving Ground Local 5G Network
  • 8.159. Swedish Armed Forces: Tactical 5G Bubbles for Secure Military Communications
  • 8.160. Tampnet: Delivering Offshore Cellular Coverage Through Private 4G/5G-Ready Networks
  • 8.161. TBN (Trinity Broadcasting Network): Private 5G Network for Broadcast Studio
  • 8.162. Tesla: Private 5G for High-Impact Manufacturing Use Cases
  • 8.163. Tianjin Port Group: On-Premise 5G Infrastructure for Intelligent & Automated Port Operations
  • 8.164. Tokyo Metropolitan University: L5G (Local 5G) Project in Support of "Future Tokyo" Strategy
  • 8.165. TotalEnergies: 3GPP-Based PMR (Professional Mobile Radio) Network for Critical Communications
  • 8.166. Toyota Group: Private 5G Networks for Industry 4.0 Applications in Manufacturing & Logistics Facilities
  • 8.167. U.S. DOD (Department of Defense): Expanding 5G-Enabled Communications & Warfighting Capabilities
  • 8.168. UKD (University Hospital of Dusseldorf): Improving Patient Care & Saving Lives With 5G Campus Network
  • 8.169. UN (United Nations): Dedicated Cellular Networks for Peacekeeping Missions
  • 8.170. Ushino Nakayama: Transforming Kagoshima Wagyu Beef Production With Local 5G Connectivity
  • 8.171. VA Palo Alto Health Care System: Campus-Wide Private 5G Network for Clinical Care Applications
  • 8.172. Vale: Private Wireless Networks for Iron Ore Mining & Transport Operations
  • 8.173. VIRVE 2.0: Finland's Nationwide Mission-Critical Broadband Service
  • 8.174. Volkswagen Group: Private 5G for Smart Manufacturing & Intelligent Vehicle Development
  • 8.175. VPA (Virginia Port Authority): Private 5G Connectivity for Semi-Automated Container Terminals
  • 8.176. West China Second University Hospital (Sichuan University): Enabling Smart Healthcare With Private 5G Network
  • 8.177. WISCO (Wuhan Iron & Steel Corporation): Dual-Layer 2.1 GHz & 3.5 GHz Private 5G Network for Steel Plant
  • 8.178. X Shore: Empowering Electric Boat Manufacturing With Private 5G Network
  • 8.179. Xcel Energy: 900 MHz Private LTE Network for Electric & Gas Utility Operations
  • 8.180. Yumeshima Container Terminal: Local 5G Network for the Digital Transformation of Port Facilities

Chapter 9: Key Ecosystem Players

Chapter 10: Market Sizing & Forecasts

  • 10.1. Global Outlook for Private LTE & 5G Network Investments
  • 10.2. Infrastructure Submarkets
    • 10.2.1. RAN
      • 10.2.1.1. Base Station RUs
      • 10.2.1.2. DUs/CUs
    • 10.2.2. Mobile Core
      • 10.2.2.1. User Plane Functions
      • 10.2.2.2. Control Plane Functions
    • 10.2.3. Transport Network
      • 10.2.3.1. Fiber & Wireline
      • 10.2.3.2. Microwave
      • 10.2.3.3. Satellite Communications
  • 10.3. Technology Generations
    • 10.3.1. LTE
      • 10.3.1.1. LTE RAN
      • 10.3.1.2. EPC
      • 10.3.1.3. Transport
    • 10.3.2. 5G
      • 10.3.2.1. 5G RAN
      • 10.3.2.2. 5GC
      • 10.3.2.3. Transport
  • 10.4. Cell Sizes
    • 10.4.1. Indoor Small Cells
    • 10.4.2. Outdoor Small Cells
    • 10.4.3. Macrocells
  • 10.5. Spectrum Licensing Models
    • 10.5.1. Mobile Operator-Owned Spectrum
    • 10.5.2. Wide Area Licensed Spectrum
    • 10.5.3. Shared & Local Area Licensed Spectrum
    • 10.5.4. Unlicensed Spectrum
  • 10.6. Frequency Ranges
    • 10.6.1. Low-Band (Sub-1 GHz)
    • 10.6.2. Mid-Band (1-6 GHz)
    • 10.6.3. High-Band (mmWave)
  • 10.7. End User Markets & Verticals
    • 10.7.1. Vertical Industries
      • 10.7.1.1. Agriculture
      • 10.7.1.2. Aviation
      • 10.7.1.3. Broadcasting
      • 10.7.1.4. Construction
      • 10.7.1.5. Education
      • 10.7.1.6. Forestry
      • 10.7.1.7. Healthcare
      • 10.7.1.8. Manufacturing
      • 10.7.1.9. Military
      • 10.7.1.10. Mining
      • 10.7.1.11. Oil & Gas
      • 10.7.1.12. Ports & Maritime Transport
      • 10.7.1.13. Public Safety
      • 10.7.1.14. Railways
      • 10.7.1.15. Utilities
      • 10.7.1.16. Warehousing & Others
    • 10.7.2. Offices, Buildings & Public Venues
  • 10.8. Regional Segmentation
    • 10.8.1. North America
      • 10.8.1.1. Infrastructure Submarkets
      • 10.8.1.2. End User Markets & Verticals
    • 10.8.2. Asia Pacific
      • 10.8.2.1. Infrastructure Submarkets
      • 10.8.2.2. End User Markets & Verticals
    • 10.8.3. Europe
      • 10.8.3.1. Infrastructure Submarkets
      • 10.8.3.2. End User Markets & Verticals
    • 10.8.4. Middle East & Africa
      • 10.8.4.1. Infrastructure Submarkets
      • 10.8.4.2. End User Markets & Verticals
    • 10.8.5. Latin & Central America
      • 10.8.5.1. Infrastructure Submarkets
      • 10.8.5.2. End User Markets & Verticals

Chapter 11: Conclusion & Strategic Recommendations

  • 11.1. Why is the Market Poised to Grow?
  • 11.2. Future Roadmap: 2025 - 2030
    • 11.2.1. 2025 - 2027: Continued Investments in Private Cellular Networks
    • 11.2.2. 2028 - 2030: Mass-Market Adoption of Industrial-Grade Standalone 5G NPNs
    • 11.2.3. 2031 & Beyond: Towards Private 6G Connectivity for Future Applications
  • 11.3. Assessing the Practical & Quantifiable Benefits of Private LTE/5G Networks
    • 11.3.1. Efficiency Gains
    • 11.3.2. Cost Savings
    • 11.3.3. Worker Safety
  • 11.4. Vendor Landscape: Greater Diversity Than Public Mobile Networks
  • 11.5. Growing Presence of Alternative LTE/5G Equipment Suppliers
  • 11.6. Emphasis on Private LTE/5G Security, Management & Orchestration Needs
  • 11.7. Funding for Startups & Established Private 5G Specialists
  • 11.8. Evolving Mobile Operator Strategies to Target Private Network Opportunities
  • 11.9. System Integrators & New Classes of Private Network Service Providers
  • 11.10. Hyperscalers Pivoting Away From the Market
  • 11.11. Acquisitions, Consolidation & Partnerships
  • 11.12. Impact of Spectrum Liberalization Initiatives
  • 11.13. Enabling IT/OT Convergence Through Industrial-Grade 5G Connectivity
  • 11.14. Role of 5G Network Slicing & Hybrid Public-Private Networks
  • 11.15. Relationship Between Private Cellular & Wi-Fi 6/6E/7 Networks
  • 11.16. Overlap With Neutral Host Systems for In-Building Coverage
  • 11.17. Close Link Between Private Networking & Edge Computing
  • 11.18. Open RAN & vRAN Adoption in Private LTE/5G Networks
  • 11.19. AI/ML-Based Network Automation: Easing the Role of Enterprise IT Departments
  • 11.20. Satellite Backhaul & NTN/Direct-to-Device Access for Coverage Extension
  • 11.21. Interconnectivity & Roaming in Private LTE/5G Networks
  • 11.22. Post-Pandemic Changes & Their Impact on the Market
  • 11.23. Strategic Recommendations
    • 11.23.1. LTE /5G Equipment & Chipset Suppliers
    • 11.23.2. System Integrators & Private Network Specialists
    • 11.23.3. National Mobile Network Operators
    • 11.23.4. End User Organizations & Vertical Industries

List of Figures

  • Figure 1: Minimum Performance Requirements for 5G Systems
  • Figure 2: NSA vs. SA 5G Deployment Modes
  • Figure 3: Isolated NPN Deployment Scenario
  • Figure 4: Dedicated Mobile Operator RAN Coverage NPN Deployment Scenario
  • Figure 5: Shared RAN With On-Premise Core NPN Deployment Scenario
  • Figure 6: Shared RAN & Control Plane NPN Deployment Scenario
  • Figure 7: NPN Hosted by Public Network Deployment Scenario
  • Figure 8: Virtual Sliced Private Network Deployment Scenario
  • Figure 9: Hybrid Public-Private Network Deployment Scenario
  • Figure 10: Shared Core Private Network Deployment Scenario
  • Figure 11: Secure MVNO Deployment Scenario
  • Figure 12: Business Models for Private LTE & 5G Networks
  • Figure 13: Value Chain of Private LTE & 5G Networks
  • Figure 14: Private LTE/5G Network Architecture
  • Figure 15: 5G NG-RAN Architecture
  • Figure 16: eNB/gNB RU Functional Elements
  • Figure 17: eNB/gNB DU Functional Elements
  • Figure 18: eNB/gNB CU Functional Elements
  • Figure 19: 5GC Architecture
  • Figure 20: Fronthaul, Midhaul & Backhaul Transport Network Segments
  • Figure 21: 5G Transport Performance Requirements
  • Figure 22: Distance & RTT Comparison Between Public & Private Edge Computing
  • Figure 23: Standardization of Private LTE/5G-Related Features in 3GPP Releases 11 - 19
  • Figure 24: Global Private LTE & 5G Network Infrastructure Revenue: 2025 - 2030 ($ Million)
  • Figure 25: Global Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 26: Global Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 27: Global Private LTE & 5G RAN Revenue: 2025 - 2030 ($ Million)
  • Figure 28: Global Private LTE & 5G Base Station RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 29: Global Private LTE & 5G Base Station RU Revenue: 2025 - 2030 ($ Million)
  • Figure 30: Global Private LTE & 5G DU/CU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 31: Global Private LTE & 5G DU/CU Revenue: 2025 - 2030 ($ Million)
  • Figure 32: Global Private LTE & 5G Mobile Core Revenue: 2025 - 2030 ($ Million)
  • Figure 33: Global Private LTE & 5G Mobile Core User Plane Revenue: 2025 - 2030 ($ Million)
  • Figure 34: Global Private LTE & 5G Mobile Core Control Plane Revenue: 2025 - 2030 ($ Million)
  • Figure 35: Global Private LTE & 5G Transport Network Revenue: 2025 - 2030 ($ Million)
  • Figure 36: Global Private LTE & 5G Fiber-Wireline Transport Revenue: 2025 - 2030 ($ Million)
  • Figure 37: Global Private LTE & 5G Microwave Transport Revenue: 2025 - 2030 ($ Million)
  • Figure 38: Global Private LTE & 5G Satellite Transport Revenue: 2025 - 2030 ($ Million)
  • Figure 39: Global Private LTE & 5G Network Revenue by Technology Generation: 2025 - 2030 ($ Million)
  • Figure 40: Global Private LTE Network Revenue: 2025 - 2030 ($ Million)
  • Figure 41: Global Private LTE RAN Revenue: 2025 - 2030 ($ Million)
  • Figure 42: Global Private LTE EPC Revenue: 2025 - 2030 ($ Million)
  • Figure 43: Global Private LTE Transport Network Revenue: 2025 - 2030 ($ Million)
  • Figure 44: Global Private 5G Network Revenue: 2025 - 2030 ($ Million)
  • Figure 45: Global Private 5G RAN Revenue: 2025 - 2030 ($ Million)
  • Figure 46: Global Private 5GC Revenue: 2025 - 2030 ($ Million)
  • Figure 47: Global Private 5G Transport Network Revenue: 2025 - 2030 ($ Million)
  • Figure 48: Global Private LTE & 5G RU Shipments by Cell Size: 2025 - 2030 (Thousands of Units)
  • Figure 49: Global Private LTE & 5G RU Revenue by Cell Size: 2025 - 2030 ($ Million)
  • Figure 50: Global Private LTE & 5G Indoor Small Cell RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 51: Global Private LTE & 5G Indoor Small Cell RU Revenue: 2025 - 2030 ($ Million)
  • Figure 52: Global Private LTE & 5G Outdoor Small Cell RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 53: Global Private LTE & 5G Outdoor Small Cell RU Revenue: 2025 - 2030 ($ Million)
  • Figure 54: Global Private LTE & 5G Macrocell RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 55: Global Private LTE & 5G Macrocell RU Revenue: 2025 - 2030 ($ Million)
  • Figure 56: Global Private LTE & 5G RU Shipments by Spectrum Licensing Model: 2025 - 2030 (Thousands of Units)
  • Figure 57: Global Private LTE & 5G RU Revenue by Spectrum Licensing Model: 2025 - 2030 ($ Million)
  • Figure 58: Global Mobile Operator-Owned Spectrum Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 59: Global Mobile Operator-Owned Spectrum Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 60: Global Wide Area Licensed Spectrum Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 61: Global Wide Area Licensed Spectrum Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 62: Global Shared & Local Area Licensed Spectrum Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 63: Global Shared & Local Area Licensed Spectrum Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 64: Global Unlicensed Spectrum Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 65: Global Unlicensed Spectrum Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 66: Global Private LTE & 5G RU Shipments by Frequency Range: 2025 - 2030 (Thousands of Units)
  • Figure 67: Global Private LTE & 5G RU Revenue by Frequency Range: 2025 - 2030 ($ Million)
  • Figure 68: Global Low-Band (Sub-1 GHz) Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 69: Global Low-Band (Sub-1 GHz) Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 70: Global Mid-Band (1-6 GHz) Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 71: Global Mid-Band (1-6 GHz) Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 72: Global High-Band (mmWave) Private LTE & 5G RU Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 73: Global High-Band (mmWave) Private LTE & 5G RU Revenue: 2025 - 2030 ($ Million)
  • Figure 74: Global Private LTE & 5G Network Infrastructure Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 75: Global Private LTE & 5G Network Infrastructure Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 76: Global Private LTE & 5G Network Revenue in Vertical Industries by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 77: Global Private LTE & 5G RAN Unit Shipments in Vertical Industries: 2025 - 2030 (Thousands of Units)
  • Figure 78: Global Private LTE & 5G Network Revenue in the Agriculture Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 79: Global Private LTE & 5G RAN Unit Shipments in the Agriculture Vertical: 2025 - 2030
  • Figure 80: Global Private LTE & 5G Network Revenue in the Aviation Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 81: Global Private LTE & 5G RAN Unit Shipments in the Aviation Vertical: 2025 - 2030
  • Figure 82: Global Private LTE & 5G Network Revenue in the Broadcasting Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 83: Global Private LTE & 5G RAN Unit Shipments in the Broadcasting Vertical: 2025 - 2030
  • Figure 84: Global Private LTE & 5G Network Revenue in the Construction Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 85: Global Private LTE & 5G RAN Unit Shipments in the Construction Vertical: 2025 - 2030
  • Figure 86: Global Private LTE & 5G Network Revenue in the Education Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 87: Global Private LTE & 5G RAN Unit Shipments in the Education Vertical: 2025 - 2030
  • Figure 88: Global Private LTE & 5G Network Revenue in the Forestry Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 89: Global Private LTE & 5G RAN Unit Shipments in the Forestry Vertical: 2025 - 2030
  • Figure 90: Global Private LTE & 5G Network Revenue in the Healthcare Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 91: Global Private LTE & 5G RAN Unit Shipments in the Healthcare Vertical: 2025 - 2030
  • Figure 92: Global Private LTE & 5G Network Revenue in the Manufacturing Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 93: Global Private LTE & 5G RAN Unit Shipments in the Manufacturing Vertical: 2025 - 2030
  • Figure 94: Global Private LTE & 5G Network Revenue in the Military Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 95: Global Private LTE & 5G RAN Unit Shipments in the Military Vertical: 2025 - 2030
  • Figure 96: Global Private LTE & 5G Network Revenue in the Mining Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 97: Global Private LTE & 5G RAN Unit Shipments in the Mining Vertical: 2025 - 2030
  • Figure 98: Global Private LTE & 5G Network Revenue in the Oil & Gas Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 99: Global Private LTE & 5G RAN Unit Shipments in the Oil & Gas Vertical: 2025 - 2030
  • Figure 100: Global Private LTE & 5G Network Revenue in the Ports & Maritime Transport Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 101: Global Private LTE & 5G RAN Unit Shipments in the Ports & Maritime Transport Vertical: 2025 - 2030
  • Figure 102: Global Private LTE & 5G Network Revenue in the Public Safety Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 103: Global Private LTE & 5G RAN Unit Shipments in the Public Safety Vertical: 2025 - 2030
  • Figure 104: Global Private LTE & 5G Network Revenue in the Railways Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 105: Global Private LTE & 5G RAN Unit Shipments in the Railways Vertical: 2025 - 2030
  • Figure 106: Global Private LTE & 5G Network Revenue in the Utilities Vertical by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 107: Global Private LTE & 5G RAN Unit Shipments in the Utilities Vertical: 2025 - 2030
  • Figure 108: Global Private LTE & 5G Network Revenue in Warehousing & Other Verticals by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 109: Global Private LTE & 5G RAN Unit Shipments in Warehousing & Other Verticals: 2025 - 2030
  • Figure 110: Global Private LTE & 5G Network Revenue in Offices, Buildings & Public Venues by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 111: Global Private LTE & 5G RAN Unit Shipments in Offices, Buildings & Public Venues: 2025 - 2030 (Thousands of Units)
  • Figure 112: Private LTE & 5G Network Infrastructure Revenue by Region: 2025 - 2030 ($ Million)
  • Figure 113: North America Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 114: North America Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 115: North America Private LTE & 5G Network Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 116: North America Private LTE & 5G Network Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 117: Asia Pacific Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 118: Asia Pacific Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 119: Asia Pacific Private LTE & 5G Network Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 120: Asia Pacific Private LTE & 5G Network Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 121: Europe Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 122: Europe Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 123: Europe Private LTE & 5G Network Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 124: Europe Private LTE & 5G Network Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 125: Middle East & Africa Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 126: Middle East & Africa Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 127: Middle East & Africa Private LTE & 5G Network Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 128: Middle East & Africa Private LTE & 5G Network Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 129: Latin & Central America Private LTE & 5G Network Revenue by Infrastructure Submarket: 2025 - 2030 ($ Million)
  • Figure 130: Latin & Central America Private LTE & 5G RAN Unit Shipments: 2025 - 2030 (Thousands of Units)
  • Figure 131: Latin & Central America Private LTE & 5G Network Revenue by End User Market: 2025 - 2030 ($ Million)
  • Figure 132: Latin & Central America Private LTE & 5G Network Revenue by Vertical Industry: 2025 - 2030 ($ Million)
  • Figure 133: Global Spending on Private LTE & 5G Networks for Vertical Industries by Technology Generation: 2025 - 2028 ($ Million)
  • Figure 134: Future Roadmap of Private LTE & 5G Networks: 2025 - 2030