封面
市场调查报告书
商品编码
1372852

原位杂交市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测,按产品、技术、按应用、最终用户、地区和竞争细分

In Situ Hybridization Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Product, By Technology, By Application, By End user, By Region and By Competition

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

原位杂交市场 2022 年估值为 15.3 亿美元,预计到 2028 年将实现显着增长,复合年增长率为 7.29%。如新冠肺炎 (COVID-19)。此外,对分子诊断工具不断增长的需求,加上原位杂交技术的日益采用,将在未来几年支撑市场的成长。

此外,人口中遗传性疾病盛行率的激增有望成为预测期内成长的关键驱动力。同时,各个市场参与者为推动原位杂交技术所采取的策略性倡议,包括合作、收购和合併,预计将在整个预测期内对市场成长产生重大正面影响。

美国国家癌症研究所报告称,2021 年美国新增癌症病例达 1,898,160 例,癌症相关死亡病例达 608,570 例,这一数字令人震惊。值得注意的是,世界卫生组织的资料强调,到2021 年9月,美国癌症患者的70%与癌症相关的死亡集中在低收入和中等收入国家。

市场概况
预测期 2024-2028
2022 年市场规模 15.3亿美元
2028 年市场规模 23.4亿美元
2023-2028 年复合年增长率 7.29%
成长最快的细分市场 医院和诊断实验室
最大的市场 北美洲

慢性病盛行率不断上升

慢性疾病对全球原位杂交市场的发展轨迹有重大影响。癌症、自体免疫疾病和传染病等疾病表现出细胞内遗传畸变或突变的标誌,有助于透过原位杂交技术进行检测和可视化。原位杂交的实用性在于其能够识别和查明与这些疾病相关的特定核酸序列,从而实现及时诊断和精准治疗。

分子生物学和遗传学的进展

分子生物学的发展对全球原位杂交市场的扩张产生了重大影响。原位杂交位于分子生物学领域,是一种有助于精确检测和定位细胞或组织内特定核酸序列的技术。分子生物学的最新技术进步显着提高了原位杂交测定的敏感度、特异性和精确度。

探针设计和合成的进步显着增强了原位杂交测定的特异性和灵敏度。例如,锁核酸 (LNA) 探针代表了一项突破性发展,能够以更高的特异性和灵敏度识别低丰度核酸标靶。同样,标记和讯号放大技术的改进提高了原位杂交测定的信噪比,从而能够辨别微弱讯号和低丰度标靶。

成像和显微镜技术的进步也促进了原位杂交市场的扩大。共焦显微镜和超分辨率显微镜等先进的显微镜方法大大提高了原位杂交测定的空间分辨率,从而促进了亚细胞结构和分子相互作用的可视化。

此外,当代分子生物学的成就为原位杂交的新应用铺平了道路。例如,萤光原位杂交 (FISH) 已发展到可以同时检测多个核酸标靶,从而能够分析复杂的遗传交互作用和基因表现模式。此外,RNA原位杂交技术的进步使得非编码RNA的检测成为可能,非编码RNA是基因调控和疾病发生的关键参与者。

个人化医疗需求不断成长

个人化医疗是推动全球原位杂交市场扩张的关键催化剂。这种医疗保健方法的重点是根据患者独特的基因组成、生活方式和环境影响为其量身定制治疗方案。原位杂交在这项范式中的关键作用在于它能够发现与不同疾病相关的特定基因突变或生物标记物,使其成为个人化医疗开发的关键工具。

原位杂交谱中的萤光原位杂交 (FISH) 和显色原位杂交 (CISH) 等技术在检测与包括癌症在内的多种疾病相关的目标基因突变或改变方面脱颖而出。这些见解使医生能够为每位患者制定最佳治疗途径,提高治疗效果,同时减轻不良副作用。

原位杂交的普遍作用延伸到伴随诊断领域,其功能是识别最有可能从特定治疗中受益的患者的测试。伴随诊断可用于临床试验中的患者选择、治疗反应监测和剂量调整,从而提高患者治疗效果并减少医疗支出。

原位杂交在个人化医疗中的作用轨迹有望在可预见的未来显着扩展。这种推动力源自于遗传讯息的不断增加和对精准治疗的需求不断增加。创新原位杂交技术和检测方法的同步开发将加速全球原位杂交市场的发展。

增加研究和开发活动

研究和开发工作对全球原位杂交市场的扩张产生了显着的影响。作为一种不断发展的技术,原位杂交的发展取决于新型测定方法和技术的不断创造,这些方法和技术扩展了其应用范围,同时提高了其测定的精密度、灵敏度、特异性和准确性。在原位杂交领域,研究和开发活动围绕探针的改进、标记和信号放大技术的优化以及成像和显微镜方法的进步。

例如,肽核酸(PNA)探针和锁核酸(LNA)探针等创新探针技术的出现显着提高了原位杂交测定的灵敏度和特异性。以酪酰胺讯号放大 (TSA) 为代表的标记和讯号放大技术的进步提高了这些检测的讯号杂讯比,从而能够辨别微弱讯号和低丰度标靶。同时,成像和显微镜技术的发展促进了原位杂交市场的成长轨迹。共焦显微镜和超解析度显微镜等高解析度显微镜模式显着提高了原位杂交测定的空间分辨率,促进了亚细胞结构和分子相互作用的可视化。

此外,研究和开发计划的范围涵盖了原位杂交新应用的探索。一个值得注意的例子是该技术在研究非编码 RNA 的分布和表达模式的应用。由于非编码 RNA 在基因调控和疾病进展中的关键作用,此特定途径具有重要意义。

医疗保健支出增加

医疗保健支出是影响全球原位杂交市场扩张的关键决定因素。对原位杂交检测和技术的需求激增本质上与一系列疾病(尤其是癌症)对精确可靠的诊断工具和疗法的需求交织在一起。这种激增本质上与医疗保健支出的不断增加有关,尤其是在已开发经济体,大量投资用于研发活动和尖端医疗保健技术的采用。这种一致的推动力催生了新颖且具创造性的原位杂交技术和测定方法,其特点是更高的准确性、灵敏度、特异性和适用性。

此外,医疗保健支出与医疗保健服务的提供(包括诊断工具和治疗)之间的连结是推动原位杂交市场成长的关键。医疗保健支出的增加支撑了包括医院、诊所和实验室在内的医疗保健基础设施的出现,从而增加了诊断工具(包括原位杂交检测)的可用性和可近性。

同时,不断升级的医疗支出模式刺激了个人化医疗的进步,这反过来又支持了原位杂交市场的扩张。个人化医疗强调根据患者的基因组成、生活方式和环境影响进行客製化治疗。值得注意的是,原位杂交在个人化医疗中的关键作用因其识别与不同疾病相关的特定基因突变或生物标记的能力而得到强调。这种协同效应推动了市场的成长轨迹。

市场区隔

全球原位杂交市场可根据产品、技术、应用、最终用户和地区进行细分。根据产品,市场可进一步分为消耗品、仪器和软体。根据技术,市场可进一步分为萤光原位杂交和显色原位杂交。根据应用,市场可进一步分为癌症诊断、细胞学、传染病诊断、神经科学和免疫学。根据最终用户,市场进一步分为医院和诊断实验室、学术和研究机构、製药和生物技术公司以及合约研究组织。

市场参与者

Abbott Laboratories.、F. Hoffmann Roche AG.、Thermo Fisher Scientific Inc.、Danaher Corp.、Agilent Technologies Inc.、Biocare Medical LLC.、Biotechne Corporation.、Qiagen NV、Merck KGAA.、Perkinelmer Inc. 是一些领先的公司全球原位杂交市场的参与者。

报告范围:

在本报告中,除了以下详细介绍的产业趋势外,全球原位杂交市场也分为以下几类:

原位杂交市场,副产品:

  • 耗材
  • 仪器
  • 软体

原位杂交市场(按技术):

  • 萤光原位杂交
  • 显色原位杂交

原位杂交市场,按应用:

  • 癌症诊断
  • 细胞学
  • 传染病诊断
  • 神经科学
  • 免疫学

原位杂交市场,依最终用户划分:

  • 医院和诊断实验室
  • 学术及研究机构
  • 製药和生物技术公司
  • 合约研究组织

原位杂交市场,按地区:

  • 北美洲
  • 美国
  • 加拿大
  • 墨西哥
  • 欧洲
  • 法国
  • 德国
  • 英国
  • 义大利
  • 西班牙
  • 亚太地区
  • 中国
  • 印度
  • 日本
  • 韩国
  • 澳洲
  • 南美洲
  • 巴西
  • 阿根廷
  • 哥伦比亚
  • 中东和非洲
  • 南非
  • 沙乌地阿拉伯
  • 阿联酋

竞争格局

  • 公司概况:全球原位杂交市场主要公司的详细分析。

可用的客製化:

  • 根据给定的市场资料,TechSci Research 可根据公司的具体需求提供客製化服务。该报告可以使用以下自订选项:

公司资讯

  • 其他市场参与者(最多五个)的详细分析和概况分析。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:客户之声

第 5 章:全球原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光原位杂交与显色原位杂交)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按地区(北美、欧洲、亚太地区、南美、中东和非洲)
    • 按公司划分 (2022)
  • 市场地图
    • 按产品分类
    • 依技术
    • 按应用
    • 按最终用户
    • 按地区

第 6 章:北美原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光与显色)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:欧洲原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光与显色)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 8 章:亚太原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光与显色)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第 9 章:南美洲原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光与显色)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲原位杂交市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按产品(耗材、仪器、软体)
    • 依技术分类(萤光原位杂交与显色原位杂交)
    • 按应用(癌症诊断、细胞学、传染病诊断、神经科学、免疫学)
    • 按最终用户(医院和诊断实验室、学术和研究机构、製药和生物技术公司、合约研究组织)
    • 按国家/地区
  • MEA:国家分析
    • 南非原位杂交
    • 沙乌地阿拉伯原位杂交
    • 阿联酋原位杂交

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 近期发展
  • 併购
  • 产品发布

第 13 章:全球原位杂交市场:SWOT 分析

第 14 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第15章:竞争格局

  • 商业概览
  • 产品供应
  • 最近的发展
  • 财务(据报导)
  • 主要人员
  • SWOT分析
    • Abbott Laboratories.
    • F. Hoffmann Roche AG.
    • Thermo Fisher Scientific Inc.
    • Danaher Corp.
    • Agilent Technologies Inc.
    • Biocare Medical LLC.
    • Biotechne Corporation.
    • Qiagen NV
    • Merck KGAA.
    • Perkinelmer Inc.

第 16 章:策略建议

简介目录
Product Code: 15520

The In Situ Hybridization market was valued at USD 1.53 Billion in 2022, and is poised for remarkable growth with a CAGR Of 7.29% by 2028.. This can be attributed to the heightened awareness surrounding genetic disorders, propelled by the emergence of novel viruses such as COVID-19. Additionally, the escalating demand for molecular diagnostic tools, coupled with the increasing adoption of in situ hybridization technology, is poised to underpin the market's growth in the forthcoming years.

Furthermore, the surging prevalence of genetic disorders within the population is poised to be a pivotal driver of growth during the forecast period. Simultaneously, the strategic initiatives undertaken by various market players, including partnerships, acquisitions, and mergers, aimed at the advancement of in situ hybridization techniques, are expected to exert a substantial positive impact on market growth throughout the forecast period.

Illustrating this trend, the U.S. National Cancer Institute reported a staggering count of 1,898,160 new cancer cases and 608,570 cancer-related fatalities in the United States during 2021. Notably, the World Health Organization's data emphasizes that, by September 2021, a significant 70% of cancer-related deaths were concentrated in low- and middle-income nations.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 1.53 Billion
Market Size 2028USD 2.34 Billion
CAGR 2023-20287.29%
Fastest Growing SegmentHospitals and Diagnostic Laboratories
Largest MarketNorth America

Growing prevalence of chronic diseases

Chronic ailments wield substantial influence over the trajectory of the global in situ hybridization market. Conditions encompassing cancer, autoimmune diseases, and infectious diseases exhibit a hallmark of genetic aberrations or mutations within cells, lending themselves to detection and visualization through in situ hybridization techniques. The utility of in situ hybridization resides in its ability to identify and pinpoint specific nucleic acid sequences linked to these maladies, thereby enabling timely diagnoses and precision therapies.

The mounting prevalence of chronic diseases propels the demand for in situ hybridization across diagnostic and research applications. In accordance with data from the World Health Organization (WHO), chronic diseases stand as the primary cause of worldwide mortality, accounting for a substantial 71% of all global deaths. Among these, cancer holds significant prominence, contributing significantly to the global chronic disease burden with an estimated 18.1 million new cases and 9.6 million fatalities in 2018. In the realm of cancer, in situ hybridization emerges as a pivotal tool, underpinning diagnosis, prognosis, and treatment. Its prowess in identifying specific genetic aberrations like gene amplification, gene fusion, or gene expression changes guides treatment decisions, tracks disease progression, and predicts therapeutic outcomes.

Beyond cancer, in situ hybridization extends its sphere of influence to encompass other chronic conditions such as infectious diseases and autoimmune disorders. For instance, its application spans the detection of distinct viral or bacterial nucleic acid sequences within infected cells or tissues, facilitating prompt diagnoses and targeted interventions.

Advancements in molecular biology and genetics

The evolution of molecular biology has wielded a substantial influence over the expansion of the global in situ hybridization market. Positioned within the realm of molecular biology, in situ hybridization constitutes a technique facilitating the precise detection and localization of specific nucleic acid sequences within cells or tissues. Recent technological progressions in molecular biology have significantly elevated the sensitivity, specificity, and precision of in situ hybridization assays.

Advancements in the design and synthesis of probes have notably augmented the specificity and sensitivity of in situ hybridization assays. Locked nucleic acid (LNA) probes, for instance, represent a breakthrough development enabling the discernment of low-abundance nucleic acid targets with heightened specificity and sensitivity. Likewise, refinements in labeling and signal amplification techniques have elevated the signal-to-noise ratio of in situ hybridization assays, enabling the discernment of faint signals and low-abundance targets.

The strides in imaging and microscopy have additionally contributed to the augmentation of the in situ hybridization market. Advanced microscopy methods such as confocal microscopy and super-resolution microscopy have substantially heightened the spatial resolution of in situ hybridization assays, thereby facilitating the visualization of subcellular structures and molecular interactions.

Moreover, contemporary molecular biology achievements have paved the way for novel applications of in situ hybridization. For example, fluorescence in situ hybridization (FISH) has evolved to facilitate the simultaneous detection of multiple nucleic acid targets, enabling the analysis of intricate genetic interactions and gene expression patterns. Furthermore, the progress in RNA in situ hybridization techniques has empowered the detection of non-coding RNAs, pivotal players in gene regulation and the genesis of diseases.

Growing demand for personalized medicine

Personalized medicine stands as a pivotal catalyst propelling the expansion of the global in situ hybridization market. This healthcare approach revolves around tailoring treatments to individual patients based on their unique genetic composition, lifestyle, and environmental influences. The pivotal role of in situ hybridization in this paradigm lies in its capacity to unearth specific genetic mutations or biomarkers linked to distinct ailments, thus rendering it a critical tool in personalized medicine's development.

Techniques such as fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) within the in situ hybridization spectrum come to the fore in detecting targeted genetic mutations or alterations tied to diverse conditions, including cancer. These insights equip physicians to curate optimal treatment pathways for each patient, elevating treatment efficacy while mitigating untoward side effects.

The pervasive role of in situ hybridization extends to the realm of companion diagnostics, which function as tests identifying patients most likely to benefit from specific treatments. Leveraged for patient selection in clinical trials, treatment response monitoring, and dosage adjustments, companion diagnostics enhance patient outcomes and mitigate healthcare expenditures.

The trajectory of in situ hybridization's role within personalized medicine is poised for a significant expansion in the foreseeable future. This impetus stems from the growing availability of genetic information and an escalating demand for precision therapies. The concurrent development of innovative in situ hybridization technologies and assays is set to amplify the evolution of the global in situ hybridization market.

Increasing research and development activities

Research and development endeavors exert a pronounced influence over the expansion of the global in situ hybridization market. As an ever-evolving technique, in situ hybridization's growth hinges on the continual creation of novel assays and technologies that extend its application spectrum while enhancing the precision, sensitivity, specificity, and accuracy of its assays. Within the in situ hybridization domain, research and development activities pivot around the refinement of probes, optimization of labeling and signal amplification techniques, and the advancement of imaging and microscopy methodologies.

For instance, the advent of innovative probe technologies like peptide nucleic acid (PNA) probes and locked nucleic acid (LNA) probes has elicited significant enhancements in the sensitivity and specificity of in situ hybridization assays. Progressions in labeling and signal amplification techniques, typified by tyramide signal amplification (TSA), have bolstered the signal-to-noise ratio of these assays, thereby enabling the discernment of faint signals and low-abundance targets. In tandem, the evolution of imaging and microscopy technologies has contributed to the growth trajectory of the in situ hybridization market. High-resolution microscopy modalities such as confocal microscopy and super-resolution microscopy have markedly elevated the spatial resolution of in situ hybridization assays, facilitating the visualization of subcellular structures and molecular interactions.

Furthermore, the purview of research and development initiatives spans the exploration of fresh applications for in situ hybridization. A noteworthy illustration is the technique's employment in studying the distribution and expression patterns of non-coding RNAs. This specific avenue assumes significance due to non-coding RNAs' pivotal role in gene regulation and the progression of diseases.

Rising healthcare expenditure

Healthcare expenditure stands as a pivotal determinant influencing the expansion of the global in situ hybridization market. The surge in demand for in situ hybridization assays and technologies is inherently intertwined with the imperative for precise and dependable diagnostic tools and therapies across a spectrum of maladies, notably cancer. This surge is intrinsically tied to escalating healthcare expenditure, particularly evident in advanced economies, where substantial investments are directed towards research and development activities and the adoption of cutting-edge healthcare technologies. This concerted impetus has engendered the creation of novel and inventive in situ hybridization technologies and assays, characterized by heightened accuracy, sensitivity, specificity, and applicability.

Furthermore, the nexus between healthcare expenditure and the provision of healthcare services, encompassing diagnostic tools and therapies, serves as a linchpin propelling the in-situ hybridization market's growth. Elevated healthcare expenditure has underpinned the emergence of enhanced healthcare infrastructure, encomassning hospitals, clinics, and laboratories, therein augmenting the availability and accessibility of diagnostic tools, including in situ hybridization assays.

In parallel, the escalating healthcare expenditure landscape has galvanized the advance of personalized medicine, which, in turn, buttresses the expansion of the in-situ hybridization market. Personalized medicine underscores treatment customization aligned with patients' genetic composition, lifestyle, and environmental influences. Notably, in situ hybridization's pivotal role in personalized medicine is underscored by its capability to identify specific genetic mutations or biomarkers linked to distinct ailments. This synergy fuels the market's growth trajectory.

Market Segmentation

Global In Situ Hybridization market can be segmented on the basis of product, technology, application, end user and region. Based on product, the market can be further divided into consumables, instruments, and software. Based on technology, the market can be further divided into fluorescent in situ hybridization v/s chromogenic in situ hybridization. Based on application, the market can be further divided into cancer diagnostics, cytology, infectious diseases diagnostics, neuroscience, and immunology. Based on end user, the market is further divided into hospitals and diagnostic laboratories, academic & research institutes, pharmaceutical & biotechnology companies, and contract research organizations.

Market Players

Abbott Laboratories., F. Hoffmann Roche AG., Thermo Fisher Scientific Inc., Danaher Corp., Agilent Technologies Inc., Biocare Medical LLC., Biotechne Corporation., Qiagen N.V, Merck KGAA., Perkinelmer Inc. are some of the leading players operating in the global In Situ Hybridization market.

Report Scope:

In this report, Global In Situ Hybridization market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

In Situ Hybridization Market, By Product:

  • Consumables
  • Instruments
  • Software

In Situ Hybridization Market, By Technology:

  • Fluorescent in situ hybridization
  • Chromogenic in situ hybridization

In Situ Hybridization Market, By Application:

  • Cancer Diagnostics
  • Cytology
  • Infectious diseases diagnostics
  • Neuroscience
  • Immunology

In Situ Hybridization Market, By End User:

  • Hospitals and Diagnostic laboratories
  • Academic & Research institutes
  • Pharmaceutical & Biotechnology companies
  • Contract research organizations

In Situ Hybridization Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • Germany
  • United Kingdom
  • Italy
  • Spain
  • Asia Pacific
  • China
  • India
  • Japan
  • South Korea
  • Australia
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global In Situ Hybridization Market.

Available Customizations:

  • With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global In Situ Hybridization Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product (Consumables, Instruments, Software)
    • 5.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 5.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 5.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 5.2.5. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
    • 5.2.6. By Company (2022)
  • 5.3. Market Map
    • 5.3.1 By Product
    • 5.3.2 By Technology
    • 5.3.3 By Application
    • 5.3.4 By End User
    • 5.3.5 By Region

6. North America In Situ Hybridization Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product (Consumables, Instruments, Software)
    • 6.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 6.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 6.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States In Situ Hybridization Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Application
        • 6.3.1.2.4. By End User
    • 6.3.2. Canada In Situ Hybridization Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Application
        • 6.3.2.2.4. By End User
    • 6.3.3. Mexico In Situ Hybridization Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Application
        • 6.3.3.2.4. By End User

7. Europe In Situ Hybridization Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product (Consumables, Instruments, Software)
    • 7.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 7.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 7.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France In Situ Hybridization Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End User
    • 7.3.2. Germany In Situ Hybridization Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End User
    • 7.3.3. United Kingdom In Situ Hybridization Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End User
    • 7.3.4. Italy In Situ Hybridization Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Application
        • 7.3.4.2.4. By End User
    • 7.3.5. Spain In Situ Hybridization Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Application
        • 7.3.5.2.4. By End User

8. Asia-Pacific In Situ Hybridization Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product (Consumables, Instruments, Software)
    • 8.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 8.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 8.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China In Situ Hybridization Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End User
    • 8.3.2. India In Situ Hybridization Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End User
    • 8.3.3. Japan In Situ Hybridization Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End User
    • 8.3.4. South Korea In Situ Hybridization Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Product
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End User
    • 8.3.5. Australia In Situ Hybridization Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Product
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End User

9. South America In Situ Hybridization Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product (Consumables, Instruments, Software)
    • 9.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 9.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 9.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil In Situ Hybridization Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End User
    • 9.3.2. Argentina In Situ Hybridization Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End User
    • 9.3.3. Colombia In Situ Hybridization Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End User

10. Middle East and Africa In Situ Hybridization Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product (Consumables, Instruments, Software)
    • 10.2.2. By Technology (Fluorescent in situ hybridization v/s Chromogenic in situ hybridization)
    • 10.2.3. By Application (Cancer Diagnostics, Cytology, Infectious diseases diagnostics, Neuroscience, Immunology)
    • 10.2.4. By End user (Hospitals and Diagnostic laboratories, Academic & Research institutes, Pharmaceutical & Biotechnology companies, Contract research organizations)
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa In Situ Hybridization Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End User
    • 10.3.2. Saudi Arabia In Situ Hybridization Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End User
    • 10.3.3. UAE In Situ Hybridization Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Global In Situ Hybridization Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. Business Overview
  • 15.2. Product Offerings
  • 15.3. Recent Developments
  • 15.4. Financials (As Reported)
  • 15.5. Key Personnel
  • 15.6. SWOT Analysis
    • 15.6.1 Abbott Laboratories.
    • 15.6.2 F. Hoffmann Roche AG.
    • 15.6.3 Thermo Fisher Scientific Inc.
    • 15.6.4 Danaher Corp.
    • 15.6.5 Agilent Technologies Inc.
    • 15.6.6 Biocare Medical LLC.
    • 15.6.7 Biotechne Corporation.
    • 15.6.8 Qiagen N.V
    • 15.6.9 Merck KGAA.
    • 15.6.10 Perkinelmer Inc.

16. Strategic Recommendations