封面
市场调查报告书
商品编码
1377273

Power-To-X 市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测,按技术、最终用途、地区和竞争进行细分

Power-To-X Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Technology By End Use By Region, and By Competition

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年全球 Power-To-X 市场价值为 3.12 亿美元,预计在预测期内将强劲增长,到 2028 年CAGR为 12.1%。向可持续和可再生能源过渡势在必行。 Power-to-X 技术在这项全球转变中发挥关键作用,提供创新的解决方案,将剩余的再生能源(主要来自风能和太阳能等)转化为各种形式,如氢、合成燃料和化学品。这种能量转换和储存方法解决了再生能源发电的间歇性问题,使其可轻鬆用于各个领域,包括运输、工业流程和发电。此外,Power-to-X 技术透过生产绿氢和永续燃料、减少温室气体排放和减轻气候变迁影响来支持脱碳议程。

人们日益认识到能源灵活性、电网稳定性和减少碳足迹的重要性,正在推动对 Power-To-X 领域的投资。世界各地的政府、产业和投资者正在积极寻求这些技术的开发和部署,以加速全球能源转型。随着世界努力实现雄心勃勃的永续发展目标,全球Power-To-X 市场预计将继续其强劲的成长轨迹,提供必要的解决方案来缩小再生能源发电与其在不同应用中的高效利用之间的差距,最终有助于更永续和低碳的未来。

主要市场驱动因素

市场概况
预测期 2024-2028
2022 年市场规模 3.12 亿美元
2028 年市场规模 6.2471亿美元
2023-2028 年CAGR 12.1%
成长最快的细分市场 电氢
最大的市场 欧洲

对再生能源的需求不断增加

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 范围的製定
  • 假设和限制
  • 研究来源
    • 二次研究
    • 初步研究
  • 市场研究方法
    • 自下而上的方法
    • 自上而下的方法
  • 计算市场规模和市场份额所遵循的方法
  • 预测方法
    • 数据三角测量与验证

第 3 章:执行摘要

第 4 章:COVID-19 对全球 Power-To-X 市场的影响

第 5 章:客户之声

第 6 章:全球 Power-To-X 市场概述

第 7 章:全球 Power-To-X 市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术分类(电能转化为氢气、电能转化为一氧化碳/合成气/甲酸、电能转化为氨、电能转化为甲烷、电能转化为甲醇、电能转化为H2O2)
    • 依最终用途(交通、农业、製造业、工业、住宅、其他)按地区和竞争)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司划分 (2022)
  • 市场地图

第 8 章:北美 Power-To-X 市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术
    • 按最终用途
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 9 章:欧洲 Power-To-X 市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术
    • 按最终用途
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 比利时

第 10 章:南美洲 Power-To-X 市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术
    • 按最终用途
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利
    • 秘鲁

第 11 章:中东和非洲 Power-To-X 市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术
    • 按最终用途
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其
    • 以色列

第 12 章:亚太地区 Power-To-X 市场展望

  • 市场规模及预测
    • 依技术
    • 按最终用途
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国Power-To-X
    • 印度 Power-To-X
    • 日本Power-To-X
    • 韩国 Power-To-X
    • 澳洲 Power-To-X
    • 印尼Power-To-X
    • 越南 Power-To-X

第 13 章:市场动态

  • 司机
  • 挑战

第 14 章:市场趋势与发展

第 15 章:公司简介

  • 液化空气集团
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 林德
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 西门子能源
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 三菱日立电力系统
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • HPEM2气体
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 蒂森克虏伯
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 国际再生能源总署
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 内莱斯
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 内莱斯(维美德公司)
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 魏德米勒
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 哥本哈根基础设施合作伙伴
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • 阿法拉伐
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

第 16 章:策略建议

关于我们及免责声明

简介目录
Product Code: 16903

Global Power-To-X Market has valued at USD 312 Million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 12.1% through 2028. The Global Power-To-X Market is experiencing significant growth, driven by the imperative transition towards sustainable and renewable energy sources. Power-to-X technologies play a pivotal role in this global shift, offering innovative solutions to convert surplus renewable energy, primarily from sources like wind and solar, into various forms such as hydrogen, synthetic fuels, and chemicals. This energy conversion and storage approach addresses the intermittent nature of renewable energy generation, making it readily available for use in various sectors, including transportation, industrial processes, and power generation. Additionally, Power-to-X technologies support the decarbonization agenda by enabling the production of green hydrogen and sustainable fuels, reducing greenhouse gas emissions and mitigating climate change impacts.

The growing recognition of the importance of energy flexibility, grid stability, and reducing carbon footprints is propelling investments in the Power-To-X sector. Governments, industries, and investors worldwide are actively pursuing the development and deployment of these technologies to accelerate the global energy transition. As the world strives to meet ambitious sustainability goals, the Global Power-To-X Market is expected to continue its robust growth trajectory, providing essential solutions to bridge the gap between renewable energy generation and its efficient utilization across diverse applications, ultimately contributing to a more sustainable and low-carbon future.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 312 Million
Market Size 2028USD 624.71 million
CAGR 2023-202812.1%
Fastest Growing SegmentPower-to-hydrogen
Largest MarketEurope

Increasing Demand for Renewable Energy Sources

The Global Power-To-X Market is driven by the growing demand for renewable energy sources and the need to reduce greenhouse gas emissions. As the world transitions towards a more sustainable energy future, there is a significant focus on harnessing renewable energy, such as solar and wind power. Power-to-X technologies play a crucial role in this transition by converting excess renewable energy into other forms, such as hydrogen, synthetic fuels, or chemicals. These converted forms can be stored, transported, and utilized in various sectors, including transportation, industry, and heating. The increasing adoption of Power-To-X solutions is driven by the need to decarbonize these sectors and reduce reliance on fossil fuels. Additionally, Power-To-X technologies offer a solution to the intermittent nature of renewable energy sources, enabling the storage and utilization of excess energy during periods of low demand. As governments and industries worldwide prioritize sustainability and seek to achieve their climate goals, the Global Power-To-X Market is poised for significant growth, providing a sustainable and efficient pathway to a greener future.

Advancements in Electrolysis and Conversion Technologies

Rapid advancements in electrolysis and conversion technologies are key drivers of the Global Power-To-X Market. Electrolysis, the process of splitting water into hydrogen and oxygen using electricity, is a critical component of Power-To-X systems. Recent technological advancements have led to the development of more efficient and cost-effective electrolyzers, enabling the production of hydrogen at scale. These advancements include the use of advanced catalysts, improved membrane materials, and optimized system designs. Furthermore, the development of novel conversion technologies allows for the transformation of hydrogen into synthetic fuels, such as methane or methanol, or the production of chemicals and materials. These advancements in electrolysis and conversion technologies enhance the overall efficiency and viability of Power-To-X solutions, making them more attractive to industries and governments seeking sustainable energy alternatives. As research and development efforts continue to drive innovation in these areas, the Global Power-To-X Market is expected to witness substantial growth, offering a promising pathway to a carbon-neutral energy system.

Integration with Existing Infrastructure and Energy Systems

The integration of Power-To-X technologies with existing infrastructure and energy systems is a significant driver of the Global Power-To-X Market. Power-To-X solutions offer a versatile and flexible approach to energy storage and utilization, allowing for seamless integration with the existing energy grid and infrastructure. For example, hydrogen produced through electrolysis can be injected into the natural gas grid, blended with natural gas, or used as a fuel for transportation. This integration enables the utilization of existing pipelines, storage facilities, and distribution networks, minimizing the need for extensive infrastructure investments. Additionally, Power-To-X technologies can leverage existing renewable energy installations, such as solar and wind farms, to produce and store energy during periods of excess generation. This integration with existing infrastructure and energy systems enhances the economic viability and scalability of Power-To-X solutions, driving their adoption across various sectors. As governments and industries seek to optimize their energy systems and maximize the utilization of renewable resources, the Global Power-To-X Market is poised to play a pivotal role in enabling this integration and facilitating the transition to a more sustainable energy landscape.

Government Support and Policy Initiatives

Government support and policy initiatives are crucial drivers of the Global Power-To-X Market. Recognizing the importance of decarbonizing the energy sector, governments worldwide are implementing supportive policies and regulations to promote the adoption of Power-To-X technologies. These initiatives include financial incentives, subsidies, tax credits, and research grants aimed at fostering innovation, reducing costs, and accelerating the deployment of Power-To-X solutions. Additionally, governments are setting ambitious renewable energy targets and implementing regulations to limit greenhouse gas emissions, creating a favorable market environment for Power-To-X technologies. Furthermore, international agreements, such as the Paris Agreement, drive the adoption of sustainable energy solutions and encourage countries to invest in renewable energy and energy storage technologies. The combination of government support and policy initiatives provides a strong foundation for the growth of the Global Power-To-X Market, attracting investments, stimulating innovation, and driving the transition towards a sustainable energy future.

Emerging Applications and Industries

The emergence of new applications and industries is a significant driver of the Global Power-To-X Market. Power-To-X technologies offer a wide range of applications beyond energy storage and decarbonization. For instance, hydrogen produced through electrolysis can be used as a feedstock to produce chemicals, fertilizers, or materials, opening up opportunities in the chemical and manufacturing sectors. Additionally, Power-To-X solutions enable the production of synthetic fuels, such as e-fuels or e-methane, which can be used in transportation, aviation, or heating applications. These emerging applications and industries create new market opportunities for Power-To-X technologies, driving their adoption and market growth. As industries across various sectors seek sustainable alternatives to traditional energy sources and governments promote the development of new industries, the Global Power-To-X Market is poised to expand, offering innovative solutions to meet the evolving energy needs of the future.

Key Market Challenges

Integration Challenges in Power-To-X Market

The Global Power-To-X Market faces significant challenges related to integration. Power-To-X technologies, which involve converting renewable energy into various forms such as hydrogen, synthetic fuels, or chemicals, require seamless integration with existing energy infrastructure and industrial processes. However, the lack of standardized protocols and frameworks for integrating Power-To-X solutions into the existing energy grid and industrial systems can hinder widespread adoption. This lack of standardization leads to compatibility issues, making it difficult to connect and synchronize different Power-To-X technologies with diverse energy sources and end-use applications. Addressing these integration challenges is crucial for the market's growth, as it ensures the efficient utilization of renewable energy and the successful integration of Power-To-X solutions into existing energy ecosystems.

Scalability and Cost Efficiency

Scalability and cost efficiency pose significant challenges in the Global Power-To-X Market. As the demand for renewable energy solutions increases, Power-To-X technologies need to scale up to meet the growing energy requirements. However, scaling up Power-To-X processes can be complex and costly, requiring substantial investments in infrastructure, equipment, and research and development. Additionally, optimizing the cost efficiency of Power-To-X technologies is crucial to make them economically viable compared to conventional energy sources. Overcoming these scalability and cost efficiency challenges is essential for the widespread adoption of Power-To-X solutions and their integration into the global energy mix.

Technological Advancements and Innovation

The rapidly evolving landscape of technological advancements and innovation presents continuous challenges for the Global Power-To-X Market. Power-To-X technologies heavily rely on advancements in areas such as renewable energy generation, energy storage, and conversion processes. Keeping up with the latest technological developments and incorporating them into Power-To-X solutions is crucial to enhance efficiency, reduce costs, and improve overall performance. Failure to address these technological challenges adequately can hinder the market's growth potential, as users seek advanced and innovative Power-To-X solutions that offer superior performance and economic viability.

Regulatory and Policy Frameworks

Regulatory and policy frameworks play a vital role in shaping the Global Power-To-X Market. The absence of clear and supportive regulations can impede the deployment and commercialization of Power-To-X technologies. Uncertainty regarding permits, licenses, and incentives can discourage investments in Power-To-X projects and hinder market growth. Additionally, the lack of harmonized international standards and policies for Power-To-X technologies can create barriers to cross-border trade and collaboration. Establishing favorable regulatory and policy frameworks that promote the development and adoption of Power-To-X solutions is crucial for the market's expansion and global integration.

Environmental and Social Acceptance

Environmental and social acceptance is a significant challenge in the Global Power-To-X Market. While Power-To-X technologies offer the potential to reduce greenhouse gas emissions and mitigate climate change, concerns regarding their environmental impact and social implications may arise. Issues such as land use, water consumption, and the sustainability of feedstock sources need to be addressed to ensure the long-term viability and acceptance of Power-To-X solutions. Engaging with stakeholders, conducting thorough environmental assessments, and implementing sustainable practices are essential to overcome these challenges and gain public trust and acceptance in the Power-To-X market.

Key Market Trends

Increasing Focus on Renewable Energy Sources

The global Power-to-X market is experiencing significant growth as there is a growing focus on renewable energy sources. With the increasing concerns about climate change and the need to reduce greenhouse gas emissions, there is a shift towards sustainable energy solutions. Power-to-X technologies, such as Power-to-Hydrogen (P2H) and Power-to-Ammonia (P2A), play a crucial role in converting excess renewable energy into storable and transportable forms. These technologies enable the integration of renewable energy sources into various sectors, including transportation, industry, and heating, thereby reducing reliance on fossil fuels.

Growing Demand for Energy Storage and Grid Flexibility

The Power-to-X market is witnessing a surge in demand for energy storage and grid flexibility solutions. As the share of intermittent renewable energy sources, such as solar and wind, increases in the energy mix, there is a need for efficient energy storage systems to balance supply and demand. Power-to-X technologies, such as Power-to-Gas (P2G) and Power-to-Liquid (P2L), enable the conversion of excess renewable energy into hydrogen or synthetic fuels, which can be stored and used when needed. These energy storage solutions enhance grid flexibility, enable load balancing, and support the integration of renewable energy into the existing energy infrastructure.

Government Support and Policy Initiatives

Government support and policy initiatives are driving the growth of the Power-to-X market. Many countries are implementing favorable regulations and incentives to promote the adoption of Power-to-X technologies. Governments are recognizing the potential of Power-to-X in decarbonizing various sectors and achieving their renewable energy targets. Financial incentives, subsidies, and research grants are being provided to encourage investments in Power-to-X projects. Additionally, collaborations between governments, research institutions, and industry players are fostering innovation and accelerating the development of Power-to-X technologies.

Technological Advancements and Cost Reductions

Technological advancements and cost reductions are playing a crucial role in the expansion of the Power-to-X market. Continuous research and development efforts are leading to improvements in the efficiency and scalability of Power-to-X technologies. Innovations in catalysts, electrolyzers, and other key components are driving down the costs associated with Power-to-X systems. As a result, Power-to-X solutions are becoming more economically viable and competitive with conventional energy sources. The decreasing costs and increasing efficiency of Power-to-X technologies are attracting investments and driving market growth.

Emerging Applications in Various Sectors

Power-to-X technologies are finding applications in various sectors, contributing to the growth of the market. In the transportation sector, Power-to-X enables the production of carbon-neutral fuels, such as hydrogen and synthetic fuels, which can be used in fuel cell vehicles and airplanes. In the industrial sector, Power-to-X solutions offer opportunities for decarbonizing processes and reducing emissions. Power-to-X technologies are also being explored for heat and power generation in residential and commercial buildings. The versatility and adaptability of Power-to-X make it a promising solution for achieving decarbonization across multiple sectors.

Integration with Existing Infrastructure and Systems

The integration of Power-to-X technologies with existing infrastructure and systems is a key trend in the market. Power-to-X solutions can leverage the existing energy infrastructure, including pipelines, storage facilities, and distribution networks, to transport and distribute hydrogen or synthetic fuels. This integration minimizes the need for extensive infrastructure investments and enables a smooth transition to a renewable energy-based system. Power-to-X technologies can also be integrated with renewable energy generation systems, such as solar and wind farms, to optimize energy utilization and enhance overall system efficiency.

Segmental Insights

Technology Insights

The power-to-H2 segment represented the highest revenue share of over 44.9% in 2022 and is anticipated to remain dominant throughout the forecast period. Hydrogen produced through power-to-H2 can be used as a clean fuel for various applications, including transportation and industrial processes. By substituting fossil fuels with hydrogen, emissions of greenhouse gases can be significantly reduced, leading to the decarbonization of sectors that are difficult to electrify directly, such as heavy-duty transportation, aviation, and industrial heating.

The power-to-methanol segment is estimated to grow significantly over the forecast period. The methanol produced through power-to-X processes offers a pathway for decarbonizing the transportation sector. Utilizing renewable electricity to produce methanol, carbon emissions associated with conventional methanol production from fossil fuels can be significantly reduced or eliminated. In addition, methanol can serve as a convenient carrier of hydrogen, allowing for the storage and transportation of hydrogen without the challenges associated with handling and storing pure hydrogen.

End Use Insights

The transportation segment held the largest revenue share of over 38.5% in 2022. Power-to-X provides a diversified energy transition pathway in the transportation sector. While battery electric vehicles (EVs) are gaining popularity, power-to-X technologies offer an alternative for applications where batteries may not be the most suitable solution due to factors such as energy density, weight, or recharging time. By providing multiple options, power-to-X contributes to a balanced and comprehensive approach to decarbonizing transportation. The residential segment is predicted to foresee significant growth in the forecast years. This segment growth is attributed to the high importance of data governance in the sector. The power-to-X displays a business' data assets and locations, while data governance identifies data owners and consumers. It aids users in managing their data. Therefore, many data users know where to turn whenever a data query arises. Increasing data volumes have initiated power-to-X to become an essential tool in the portfolio of data governance capabilities. The enterprise framework offered by data governance also promotes teamwork and collaboration among data users in various departments to synthesize all the technical and commercial information of an organization's data assets.

Regional Insights

Europe dominated the market in 2022, accounting for over 40% share of the global revenue. Supportive policies and regulations in Europe are crucial in driving the adoption of power-to-X technologies. For instance, the European Union's Clean Energy Package includes provisions specifically targeting power-to-X deployment and support mechanisms for renewable hydrogen and synthetic fuels. These policies create a favorable market environment, incentivize investment, and stimulate innovation in European power-to-X technologies. Middle East & Africa is anticipated to register the highest CAGR from 2023 to 2030. The potential for a hydrogen economy is also gaining traction in the MEA region. Embracing power-to-X technologies can pave the way for developing a hydrogen economy, creating economic opportunities, fostering regional cooperation, and contributing to sustainable development goals. By November 2022, the UAE had six hydrogen projects under development with an investment worth USD 1.66 billion. With these projects, the UAE will be able to supply 25 percent of the global low-carbon hydrogen by 2030. In January 2021, the country also formed the Abu Dhabi Hydrogen Alliance, comprising ADQ, Mubadala Investment Company, ADNOC, and the country's Ministry of Energy and Infrastructure. The UAE has been actively investing in renewable energy projects and exploring the potential of power-to-X technologies in recent years.

Key Market Players

Air Liquide

Linde

Siemens Energy

Mitsubishi Hitachi Power Systems

HPEM2GAS

Thyssenkrupp

IRENA

Neles

Neles (Valmet Oyj)

Weidmuller

Copenhagen Infrastructure Partners

Alfa Laval

Report Scope:

In this report, the Global Power-To-X Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Power-To-X Market, By End Use:

  • Transportation
  • Agriculture
  • Manufacturing
  • Industry
  • Residential
  • Others

Power-To-X Market, By Technology:

  • Power-to-H2
  • Power-to-CO/Syngas/Formic Acid
  • Power-to-NH3
  • Power-to-Methane
  • Power-to-Methanol
  • Power-to-H2O2

Power-To-X Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Indonesia
  • Vietnam
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Chile
  • Peru
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Turkey
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Power-To-X Market.

Available Customizations:

  • Global Power-To-X market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Power-To-X Market

5. Voice of Customer

6. Global Power-To-X Market Overview

7. Global Power-To-X Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology (Power-to-H2, Power-to-CO/Syngas/Formic Acid, Power-to-NH3, Power-to-Methane, Power-to-Methanol, Power-to-H2O2)
    • 7.2.2. By End Use (Transportation, Agriculture, Manufacturing, Industry, Residential, Others) By Region, and By Competition)
    • 7.2.3. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2022)
  • 7.4. Market Map

8. North America Power-To-X Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology
    • 8.2.2. By End Use
    • 8.2.3. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Power-To-X Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
        • 8.3.1.2.2. By End Use
    • 8.3.2. Canada Power-To-X Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
        • 8.3.2.2.2. By End Use
    • 8.3.3. Mexico Power-To-X Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
        • 8.3.3.2.2. By End Use

9. Europe Power-To-X Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology
    • 9.2.2. By End Use
    • 9.2.3. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Power-To-X Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
        • 9.3.1.2.2. By End Use
    • 9.3.2. France Power-To-X Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
        • 9.3.2.2.2. By End Use
    • 9.3.3. United Kingdom Power-To-X Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology
        • 9.3.3.2.2. By End Use
    • 9.3.4. Italy Power-To-X Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Technology
        • 9.3.4.2.2. By End Use
    • 9.3.5. Spain Power-To-X Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Technology
        • 9.3.5.2.2. By End Use
    • 9.3.6. Belgium Power-To-X Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Technology
        • 9.3.6.2.2. By End Use

10. South America Power-To-X Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology
    • 10.2.2. By End Use
    • 10.2.3. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Power-To-X Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
        • 10.3.1.2.2. By End Use
    • 10.3.2. Colombia Power-To-X Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
        • 10.3.2.2.2. By End Use
    • 10.3.3. Argentina Power-To-X Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
        • 10.3.3.2.2. By End Use
    • 10.3.4. Chile Power-To-X Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology
        • 10.3.4.2.2. By End Use
    • 10.3.5. Peru Power-To-X Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Technology
        • 10.3.5.2.2. By End Use

11. Middle East & Africa Power-To-X Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Technology
    • 11.2.2. By End Use
    • 11.2.3. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Power-To-X Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Technology
        • 11.3.1.2.2. By End Use
    • 11.3.2. UAE Power-To-X Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Technology
        • 11.3.2.2.2. By End Use
    • 11.3.3. South Africa Power-To-X Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Technology
        • 11.3.3.2.2. By End Use
    • 11.3.4. Turkey Power-To-X Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Technology
        • 11.3.4.2.2. By End Use
    • 11.3.5. Israel Power-To-X Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Technology
        • 11.3.5.2.2. By End Use

12. Asia Pacific Power-To-X Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Technology
    • 12.1.2. By End Use
    • 12.1.3. By Country
  • 12.2. Asia-Pacific: Country Analysis
    • 12.2.1. China Power-To-X Market Outlook
      • 12.2.1.1. Market Size & Forecast
        • 12.2.1.1.1. By Value
      • 12.2.1.2. Market Share & Forecast
        • 12.2.1.2.1. By Technology
        • 12.2.1.2.2. By End Use
    • 12.2.2. India Power-To-X Market Outlook
      • 12.2.2.1. Market Size & Forecast
        • 12.2.2.1.1. By Value
      • 12.2.2.2. Market Share & Forecast
        • 12.2.2.2.1. By Technology
        • 12.2.2.2.2. By End Use
    • 12.2.3. Japan Power-To-X Market Outlook
      • 12.2.3.1. Market Size & Forecast
        • 12.2.3.1.1. By Value
      • 12.2.3.2. Market Share & Forecast
        • 12.2.3.2.1. By Technology
        • 12.2.3.2.2. By End Use
    • 12.2.4. South Korea Power-To-X Market Outlook
      • 12.2.4.1. Market Size & Forecast
        • 12.2.4.1.1. By Value
      • 12.2.4.2. Market Share & Forecast
        • 12.2.4.2.1. By Technology
        • 12.2.4.2.2. By End Use
    • 12.2.5. Australia Power-To-X Market Outlook
      • 12.2.5.1. Market Size & Forecast
        • 12.2.5.1.1. By Value
      • 12.2.5.2. Market Share & Forecast
        • 12.2.5.2.1. By Technology
        • 12.2.5.2.2. By End Use
    • 12.2.6. Indonesia Power-To-X Market Outlook
      • 12.2.6.1. Market Size & Forecast
        • 12.2.6.1.1. By Value
      • 12.2.6.2. Market Share & Forecast
        • 12.2.6.2.1. By Technology
        • 12.2.6.2.2. By End Use
    • 12.2.7. Vietnam Power-To-X Market Outlook
      • 12.2.7.1. Market Size & Forecast
        • 12.2.7.1.1. By Value
      • 12.2.7.2. Market Share & Forecast
        • 12.2.7.2.1. By Technology
        • 12.2.7.2.2. By End Use

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Air Liquide
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Linde
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Siemens Energy
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Mitsubishi Hitachi Power Systems
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. HPEM2GAS
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Thyssenkrupp
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. IRENA
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Neles
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Neles (Valmet Oyj)
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Weidmuller
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered
  • 15.11. Copenhagen Infrastructure Partners
    • 15.11.1. Business Overview
    • 15.11.2. Key Revenue and Financials
    • 15.11.3. Recent Developments
    • 15.11.4. Key Personnel/Key Contact Person
    • 15.11.5. Key Product/Services Offered
  • 15.12. Alfa Laval
    • 15.12.1. Business Overview
    • 15.12.2. Key Revenue and Financials
    • 15.12.3. Recent Developments
    • 15.12.4. Key Personnel/Key Contact Person
    • 15.12.5. Key Product/Services Offered

16. Strategic Recommendations

About Us & Disclaimer