封面
市场调查报告书
商品编码
1429254

核融合市场:现况分析与预测(2030-2040)

Nuclear Fusion Market: Current Analysis and Forecast (2030-2040)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 147 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

由于政府对核能的资助增加,聚变市场预计将以约 6% 的复合年增长率稳定成长。 此外,随着对永续能源的需求不断增长,以及对气候变迁和化石燃料储备枯竭的日益关注,核融合可以提供几乎无限的能源供应,而且不会产生排放,满足全球能源需求。它已成为主流,因为它具有被利用的潜力。 此外,技术进步显着提高了核融合的可行性和商业可行性。 等离子体约束、超导磁体和聚变反应器设计的创新促进了更高效、更紧凑的聚变反应器的发展。 这些技术进步正在增强投资者的信心并吸引大量资本进入该行业。 例如,2022 年 12 月,美国能源部宣布在聚变科学方面取得重大科学进展。 令人惊讶的是,他们获得了比引起核融合反应所需的更多的能量,展示了突破性的结果。

依技术,市场分为惯性约束和磁约束。 磁约束通常被认为是全世界核融合最有效且高度优选的技术。 磁约束趋势的主要驱动力是磁约束允许更长时间的持续等离子体约束,这对于实现聚变所需的条件至关重要。 惯性约束通常需要短脉衝,而磁约束则适用于雷射聚变等其他应用。 此外,託卡马克和仿星器等磁性约束技术具有高度可扩展性,可开发成更大、更强大的设备。 从长远来看,这种可扩展性将能够产生更大量的聚变能。 除此之外,磁约束方法可以更好地控制等离子体的形状和稳定性,从而实现更有效率的反应器设计。 这增加了控制聚变反应和最大化能量输出的能力。

根据燃料,市场分为氘氚、氘、氘氦-3 和质子硼。 目前,全球最高效、最受青睐的聚变燃料似乎是氘-氚 (D-T) 燃料组合。 氘是氢的同位素,在海水中很容易获得且含量丰富。 另一方面,氚在自然界中并不存在,必须在聚变反应器中产生或生长。 然而,氚可以从相对丰富的锂中生产。 此外,D-T聚变需要最低的温度才能实现聚变,与其他燃料组合相比,实现和维持聚变相对容易。 除此之外,与其他燃料组合相比,D-T聚变具有最高的单位质量能量输出。 这种高能量输出有助于其作为商业聚变发电燃料的普及。

为了更了解融合的市场介绍,市场为北美(美国、加拿大等北美地区)、欧洲(德国、英国、法国、西班牙、义大利等欧洲地区)和亚太地区(中国,根据在世界其他地区(日本、印度、亚太其他地区)和世界其他地区的全球影响力进行分析。 欧洲取得了显着进展,被广泛认为是聚变发电领域的领导者。 许多因素促进了欧洲在这一领域的进步,其中一个着名的例子是国际热核实验反应器(ITER)。 作为ITER计画的东道国,欧洲拥有世界上最大的聚变实验设施,位于法国。 这项合作涉及 35 个国家,其中包括几个欧洲国家,并显着加强了欧洲作为核融合研究领导者的地位。 此外,欧洲在致力于推动聚变能源的研究机构和大学之间建立了强有力的伙伴关係。 欧洲聚变发展协议 (EFDA) 和 EUROfusion 联盟是此类合作的典型例子,它们汇集了科学家、工程师和资源来推动聚变能源的发展。 此外,英国的欧洲联合环面 (JET) 和德国的温德尔斯坦 7-X 设施等设施在欧洲核融合研究的领导地位中发挥着至关重要的作用。

目录

第一章市场介绍

  • 市场定义
  • 主要目标
  • 利害关係人
  • 限制

第二章研究方法或假设

  • 调查过程
  • 调查方法
  • 受访者简介

第三章市场总结

第 4 章执行摘要

第五章 COVID-19 对融合市场的影响

第 6 章 Fusion 市场收入,2020-2030

第 7 章技术市场洞察

  • 惯性约束
  • 磁约束

第 8 章燃料市场洞察

  • 氘氚
  • 氘氦 3
  • 质子硼

第 9 章按地区划分的市场洞察

  • 北美
    • 美国
    • 加拿大
    • 其他北美地区
  • 欧洲
    • 德国
    • 英国。
    • 法国
    • 义大利
    • 西班牙
    • 其他欧洲地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 其他亚太地区
  • 世界其他地区

第 10 章融合市场动态

  • 市场驱动因素
  • 市场挑战
  • 影响分析

第 11 章融合市场机会

第十二章融合市场趋势

第十三章需求方与供给方分析

  • 需求方分析
  • 供给面分析

第14章价值链分析

第15章竞争场景

  • 竞争状况
    • 波特五力分析

第十六章公司简介

  • First Light Fusion Ltd
  • Zap Energy Inc.
  • Renaissance Fusion
  • Lockheed Martin Corporation
  • TAE Technologies, Inc.
  • Commonwealth Fusion Systems
  • Marvel Fusion GmbH
  • General Fusion
  • KYOTO FUSIONEERING LTD.
  • Tokamak Energy Ltd

第十七章免责声明

简介目录
Product Code: UMEP212547

Nuclear fusion, in the context of physics and energy production, refers to a process in which two or more atomic nuclei join together to form a new, heavier nucleus. This merging of atomic nuclei releases an immense amount of energy. It is the fundamental mechanism by which stars, including our Sun, generate heat and light. Nuclear fusion has the potential to revolutionize energy production due to numerous benefits. It produces vast amounts of energy, is virtually limitless in terms of fuel availability, and generates significantly less radioactive waste compared to nuclear fission (the splitting of heavy atomic nuclei). Furthermore, fusion reactions do not release greenhouse gases or contribute to the long-lived radioactive waste associated with conventional power sources.

The Nuclear Fusion Market is expected to grow at a steady CAGR of around 6% owing to the increased government funding for nuclear energy. Furthermore, the increasing need for sustainable energy sources and rising concerns over climate change and depleting fossil fuel reserves have catapulted nuclear fusion into the mainstream due to its potential to provide an emission-free, virtually limitless energy supply, addressing global energy demands. Moreover, advancements in technology have significantly enhanced the feasibility and commercial viability of nuclear fusion. Innovations in plasma confinement, superconducting magnets, and fusion reactor designs have led to the development of more efficient and compact fusion reactors. These technological advancements have bolstered investor confidence and attracted substantial funding to the sector. For instance, in December 2022, a significant scientific advancement in nuclear fusion science was announced by the U.S. Department of Energy. Remarkably, the fusion reaction yielded more energy than the amount required to initiate it, marking a groundbreaking achievement.

Based on technology, the market is bifurcated into inertial confinement and magnetic confinement. Magnetic confinement is generally considered the most efficient and highly preferred technology for global nuclear fusion. The primary factor responsible for this inclination towards magnetic confinement is that, they allow for sustained plasma confinement over longer durations, which is essential for achieving the conditions required for nuclear fusion. While inertial confinement typically involves short-duration pulses that are more suitable for other applications, such as laser fusion. Furthermore, magnetic confinement technologies, such as tokamaks and stellarators, are more scalable and can be developed into larger and more powerful devices. This scalability enables the production of more significant amounts of fusion energy in the long run. In addition to this, The magnetic confinement approach provides better control over the shape and stability of the plasma, allowing for more efficient reactor designs. This enhances the ability to control fusion reactions and maximize energy output.

Based on fuels, the market is segmented into deuterium-tritium, deuterium, deuterium helium3, and proton boron. The most efficient and highly preferred fuel for nuclear fusion globally currently seems to be the deuterium-tritium (D-T) fuel combination. Primary factors that are responsible for this include abundance, where deuterium, an isotope of hydrogen, is readily available in seawater, making it abundant. Tritium, on the other hand, is not naturally occurring and needs to be produced or bred within the fusion reactor. However, tritium can be bred from lithium, which is also relatively abundant. Furthermore, D-T fusion has the lowest temperature requirements for achieving fusion, making it relatively easier to achieve and sustain compared to other fuel combinations. In addition to this, D-T fusion offers the highest energy output per unit mass compared to other fuel combinations. This higher energy output contributes to its preference as a fuel for commercial fusion power generation.

For a better understanding of the market adoption of nuclear fusion, the market is analyzed based on its worldwide presence in countries such as North America (The U.S., Canada, and the Rest of North America), Europe (Germany, The U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Europe has made remarkable strides and is widely recognized as a frontrunner in the realm of nuclear fusion power generation. Numerous factors have contributed to Europe's progress in this domain, with one notable example being the International Thermonuclear Experimental Reactor (ITER). As the host of the ITER project, Europe boasts the world's largest experimental fusion facility, situated in France. This collaborative endeavor involves 35 countries, including several European nations, and has significantly bolstered Europe's position as a leader in nuclear fusion research. Moreover, Europe has fostered robust partnerships among research institutions and universities dedicated to advancing fusion energy. The European Fusion Development Agreement (EFDA) and the EUROfusion consortium are prime illustrations of such collaborations, uniting scientists, engineers, and resources for the advancement of fusion energy. Additionally, Europe's research infrastructure for nuclear fusion is firmly established, with facilities like the Joint European Torus (JET) in the United Kingdom and the Wendelstein 7-X facility in Germany playing pivotal roles in Europe's leadership in fusion research.

Some of the major players operating in the market include First Light Fusion Ltd; Zap Energy Inc.; Renaissance Fusion; Lockheed Martin Corporation; TAE Technologies, Inc.; Commonwealth Fusion Systems; Marvel Fusion GmbH; General Fusion; KYOTO FUSIONEERING LTD.; and Tokamak Energy Ltd

TABLE OF CONTENTS

1 MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2 RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the Nuclear Fusion Market
  • 2.2. Research Methodology of the Nuclear Fusion Market
  • 2.3. Respondent Profile

3 MARKET SYNOPSIS

4 EXECUTIVE SUMMARY

5 IMPACT OF COVID-19 ON THE NUCLEAR FUSION MARKET

6 NUCLEAR FUSION MARKET REVENUE (USD BN), 2020-2030F.

7 MARKET INSIGHTS BY TECHNOLOGY

  • 7.1. Inertial Confinement
  • 7.2. Magnetic Confinement

8 MARKET INSIGHTS BY FUELS

  • 8.1. Deuterium tritium
  • 8.2. Deuterium
  • 8.3. Deuterium Helium3
  • 8.4. Proton Boron

9 MARKET INSIGHTS BY REGION

  • 9.1. North America
    • 9.1.1. The U.S.
    • 9.1.2. Canada
    • 9.1.3. Rest of North America
  • 9.2. Europe
    • 9.2.1. Germany
    • 9.2.2. The U.K.
    • 9.2.3. France
    • 9.2.4. Italy
    • 9.2.5. Spain
    • 9.2.6. Rest of Europe
  • 9.3. Asia-Pacific
    • 9.3.1. China
    • 9.3.2. India
    • 9.3.3. Japan
    • 9.3.4. South Korea
    • 9.3.5. Rest of Asia-Pacific
  • 9.4. Rest of the World

10 NUCLEAR FUSION MARKET DYNAMICS

  • 10.1. Market Drivers
  • 10.2. Market Challenges
  • 10.3. Impact Analysis

11 NUCLEAR FUSION MARKET OPPORTUNITIES

12 NUCLEAR FUSION MARKET TRENDS

13 DEMAND AND SUPPLY-SIDE ANALYSIS

  • 13.1. Demand Side Analysis
  • 13.2. Supply Side Analysis

14 VALUE CHAIN ANALYSIS

15 COMPETITIVE SCENARIO

  • 15.1. Competitive Landscape
    • 15.1.1. Porters Fiver Forces Analysis

16 COMPANY PROFILED

  • 16.1. First Light Fusion Ltd
  • 16.2. Zap Energy Inc.
  • 16.3. Renaissance Fusion
  • 16.4. Lockheed Martin Corporation
  • 16.5. TAE Technologies, Inc.
  • 16.6. Commonwealth Fusion Systems
  • 16.7. Marvel Fusion GmbH
  • 16.8. General Fusion
  • 16.9. KYOTO FUSIONEERING LTD.
  • 16.10. Tokamak Energy Ltd

17 DISCLAIMER