封面
市场调查报告书
商品编码
1892689

再生原料化学品市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Renewable Feedstock Chemicals Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024年全球再生原料化学品市场价值为1,560亿美元,预计2034年将以13.6%的复合年增长率成长至5,567亿美元。

再生原料化学品市场 - IMG1

再生原料化学品源自永续的非化石资源,包括生物质、农业残余物、有机废弃物和生物基中间体。与传统的石油化学产品不同,这些化学品旨在降低碳足迹、促进资源高效生产并满足全球永续发展要求。生物技术、生物化学和热化学转化方法的创新显着推动了市场发展,其中酶转化、精准发酵、气化和废物製化学品技术提高了产量和原料多样性。包装、汽车、建筑、纺织和消费品等行业的需求不断增长,正在加速其应用。企业正越来越多地将可直接替代的生物基材料整合到现有生产线中,以在不中断营运的情况下减少排放。强有力的监管支持、企业对环境、社会和治理(ESG)的承诺以及消费者对绿色产品的偏好转变,正在进一步推动市场成长,并塑造向循环工业价值链的转型。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 1560亿美元
预测值 5567亿美元
复合年增长率 13.6%

平台化学品市场规模预计在2024年达到417亿美元,是许多下游生物基化学产品的关键组成部分。有利于永续材料的法规正在加速生物聚合物和树脂在包装领域的应用。再生塑胶生产效率的提高和成熟途径的建立,提升了生物基芳烃、烯烃、二醇和二羧酸在生物聚酯和高附加价值材料生产中的重要性。

2024年,生化转化领域创造了655亿美元的产值,凸显了其在利用发酵和酶促途径从生物质生产高价值化学品方面的重要作用。热化学转化因其能够利用多种原料生产合成气、生物油和先进燃料而日益受到关注。化学转化技术能够实现精确的分子转化,进而提高产品产率和性能。

2024年,美国再生原料化学品市场规模达566亿美元,引领北美市场成长。该地区受益于雄心勃勃的可持续发展目标、向生物基材料的产业转型、有利的法规以及企业脱碳措施。联邦政府的激励措施、私营部门对生物聚合物、再生中间体和负碳製程日益增长的需求,正使美国成为北美市场扩张的关键驱动力。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 生物基聚合物和替代化学品的应用日益广泛
      • 生物化学和热化学技术的进步
      • 扩大废弃物和残渣原料的供应
    • 产业陷阱与挑战
      • 高昂的生产成本限制了竞争力
      • 产品品质不稳定
    • 市场机会
      • 与循环经济解决方案的整合
      • 特种生物基化学品的开发
      • 利用数位化可追溯性打造高端产品
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 价格趋势
    • 按地区
    • 依产品类型
  • 未来市场趋势
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 专利格局
  • 贸易统计(HS编码)(註:仅提供重点国家的贸易统计资料)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估算与预测:依产品类型划分,2021-2034年

  • 平台化学品
    • 醇类
      • 乙醇(生物乙醇、纤维素乙醇)
      • 甲醇(生物甲醇)
      • 丁醇(生物丁醇)
    • 有机酸
      • 乳酸
      • 琥珀酸
      • 柠檬酸
      • 衣康酸
    • 甘油和多元醇
      • 甘油(丙三醇)
      • 山梨醇
      • 木糖醇
  • 生物聚合物和树脂
    • 可生物降解聚合物
      • 聚乳酸(PLA)
      • 聚羟基脂肪酸酯(PHA)
      • 淀粉基聚合物
    • 即插即用的生物聚合物
      • 生物基聚乙烯(Bio-PE、Bio-HDPE、Bio-LDPE)
      • 生物基聚对苯二甲酸乙二酯(Bio-PET)
      • 生物基乙烯-醋酸乙烯酯共聚物(Bio-EVA)
      • 生物基芳烃和烯烃
    • 芳烃(BTX)
      • 生物苯
      • 生物甲苯
      • 生物二甲苯(Bio-PX)
      • 木质素中的芳香物质
    • 烯烃
      • 生物乙烯
      • 生物丙烯
  • 二醇和二元酸
    • 二醇
      • 单乙二醇(生物-MEG)
      • 丙二醇(1,2-丙二醇)
      • 1,3-丙二醇
      • 1,4-丁二醇(Bio-BDO)
      • 异山梨醇
    • 二元酸
      • 呋喃二甲酸(FDCA)
      • 己二酸
      • 癸二酸
      • 壬二酸
  • 脂肪酸及其衍生物
    • 脂肪酸
    • 脂肪酸衍生物
      • 二聚体脂肪酸
      • 脂肪醇
      • 脂肪酸酯(FAME、FAEE)
  • 特种化学品
    • 生物溶剂
    • 界面活性剂
    • 用于聚氨酯的多元醇
    • 润滑剂
  • 生物中间体
    • 液态生物中间体(生物原油、生物油)
    • 气态生物中间体(合成气、沼气)
    • 固体/半固体生物中间体(醣类、游离脂肪酸、乳酸)

第六章:市场估算与预测:依原料类型划分,2021-2034年

  • 生质原料
    • 农业原料
      • 淀粉作物(玉米、高粱、大麦)
      • 糖料作物(甘蔗、甜菜、甜高粱)
      • 油料作物(大豆、油菜籽、亚麻荠、棕榈)
    • 农业残余物
      • 玉米秸秆
      • 小麦秸秆
      • 甘蔗渣和糖蜜
    • 森林来源原料
      • 伐木残余物
      • 磨坊残渣(锯屑、树皮、黑液)
    • 专用能源作物
      • 柳枝稷和芒草
      • 短轮伐期木本作物
      • 藻类和海洋生物质
  • 废弃物衍生原料
    • 城市生活垃圾和有机垃圾(生活垃圾、食物垃圾)
    • 工业废弃物(废食用油、牛油、蒸馏油)
    • 农业及动物废弃物(粪便、垫料)
    • 沼气(垃圾掩埋场、沼气池)
  • 再生碳原料
    • 机械回收
    • 化学回收(热解、气化)
  • 捕获的碳原料
    • 大气/直接空气捕获(DAC)
    • 工业点源(烟气、废气)
    • 生物源二氧化碳(发酵、厌氧消化)

第七章:市场估计与预测:依转换技术划分,2021-2034年

  • 生化转化
    • 发酵(酒精发酵、乳酸发酵、高级发酵)
    • 酵素水解
    • 厌氧消化
  • 热化学转化
    • 气化
    • 热解(快速、慢速)
    • 热催化转化(BioTCat)
  • 化学转化
    • 酯交换反应
    • 加氢处理/加氢处理
    • 费托合成
    • 脱水
    • 甲醇制烯烃/芳烃(MTO/MTA)
  • 电化学及碳捕集与利用工艺
    • 电解(可再生氢气生产)
    • 二氧化碳电化学还原
    • 二氧化碳与氢气的合成
  • 机械和物理过程
    • 机械回收
    • 化学回收

第八章:市场估算与预测:依最终用途产业划分,2021-2034年

  • 包装产业
  • 汽车产业
  • 纺织服装业
  • 建筑业
  • 食品饮料业
  • 製药和医疗保健产业
  • 个人护理和化妆品行业
  • 油漆和涂料行业
  • 农业产业
  • 化工
  • 电子业
  • 石油和天然气产业

第九章:市场估计与预测:依地区划分,2021-2034年

  • 北美洲
    • 我们
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第十章:公司简介

  • Amyris, Inc.
  • Axens
  • Avantium NV
  • BASF SE
  • Braskem SA
  • Cargill, Incorporated
  • Corbion NV
  • Covation Bio
  • dsm-firmenich
  • Genomatica, Inc.
  • India Glycols Limited
  • NatureWorks LLC
  • Neste Corporation
  • Novamont SpA
  • Qore - Cargill/HELM Joint Venture
  • Roquette
  • Toray Industries
  • UPM Biochemicals
简介目录
Product Code: 15375

The Global Renewable Feedstock Chemicals Market was valued at USD 156 billion in 2024 and is estimated to grow at a CAGR of 13.6% to reach USD 556.7 billion by 2034.

Renewable Feedstock Chemicals Market - IMG1

Renewable feedstock chemicals are derived from sustainable, non-fossil sources, including biomass, agricultural residues, organic waste, and bio-based intermediates. Unlike conventional petrochemical products, these chemicals are designed to lower carbon footprints, promote resource-efficient production, and meet global sustainability mandates. Innovations in biotechnological, biochemical, and thermochemical conversion methods have significantly boosted the market, with enzymatic conversion, precision fermentation, gasification, and waste-to-chemicals technologies enhancing yield and feedstock diversity. Rising demand from industries such as packaging, automotive, construction, textiles, and consumer goods is accelerating adoption. Companies are increasingly integrating drop-in bio-based materials into existing production lines to reduce emissions without operational disruption. Strong regulatory support, corporate ESG commitments, and shifting consumer preferences toward green products are further driving market growth and shaping the transition toward circular industrial value chains.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$156 Billion
Forecast Value$556.7 Billion
CAGR13.6%

The platform chemicals segment accounted for USD 41.7 billion in 2024, acting as essential building blocks for a wide range of downstream bio-based chemical products. Regulations favoring sustainable materials are accelerating the adoption of biopolymers and resins for packaging applications. Improved production efficiency and established pathways for renewable plastics have elevated the importance of bio-based aromatics, olefins, diols, and dicarboxylic acids in bio-polyester and value-added material production.

The biochemical conversion segment generated USD 65.5 billion in 2024, highlighting its role in producing high-value chemicals from biomass using fermentation and enzymatic pathways. Thermochemical conversion is gaining traction for its versatility in producing syngas, bio-oils, and advanced fuels from diverse feedstocks. Chemical conversion techniques enable precise molecular transformations, boosting product yield and performance.

U.S. Renewable Feedstock Chemicals Market accounted for USD 56.6 billion in 2024, leading North America's growth. The region benefits from ambitious sustainability targets, industrial transitions to bio-based materials, supportive regulations, and corporate decarbonization initiatives. Federal incentives, rising private-sector demand for biopolymers, renewable intermediates, and carbon-negative processes are positioning the U.S. as a key driver of market expansion in North America.

Major players operating in the Global Renewable Feedstock Chemicals Market include Amyris, Inc., Axens, Avantium N.V., BASF SE, Braskem S.A., Cargill, Incorporated, Corbion N.V., Covation Bio, DSM-Firmenich, Genomatica, Inc., India Glycols Limited, NatureWorks LLC, Neste Corporation, Novamont S.p.A., Qore (Cargill/HELM Joint Venture), Roquette, Toray Industries, and UPM Biochemicals. Companies in the Global Renewable Feedstock Chemicals Market are adopting strategies such as expanding production capacity, investing in R&D for novel feedstocks and conversion technologies, and forming strategic alliances to broaden distribution networks. They focus on developing drop-in bio-based alternatives compatible with existing infrastructure, enhancing product portfolio diversification, and emphasizing regulatory compliance and sustainability certifications. Firms are leveraging circular economy principles, optimizing process efficiencies, and utilizing digital solutions for supply chain traceability.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Product Type
    • 2.2.2 Feedstock Type
    • 2.2.3 Conversion Technology
    • 2.2.4 End use Industry
    • 2.2.5 Regional
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing adoption of bio-based polymers & drop-in chemicals
      • 3.2.1.2 Advancements in biochemical & thermochemical technologies
      • 3.2.1.3 Expanding availability of waste & residue feedstocks
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High production costs limit competitiveness
      • 3.2.2.2 Inconsistent product quality
    • 3.2.3 Market opportunities
      • 3.2.3.1 Integration with circular economy solutions
      • 3.2.3.2 Development of specialty bio-based chemicals
      • 3.2.3.3 Leveraging digital traceability for premium products
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product type
  • 3.9 Future market trends
  • 3.10 Technology and innovation landscape
    • 3.10.1 Current technological trends
    • 3.10.2 Emerging technologies
  • 3.11 Patent landscape
  • 3.12 Trade statistics (HS code) ( Note: the trade statistics will be provided for key countries only)
    • 3.12.1 Major importing countries
    • 3.12.2 Major exporting countries
  • 3.13 Sustainability and environmental aspects
    • 3.13.1 Sustainable practices
    • 3.13.2 Waste reduction strategies
    • 3.13.3 Energy efficiency in production
    • 3.13.4 Eco-friendly initiatives
  • 3.14 Carbon footprint consideration

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans

Chapter 5 Market Estimates and Forecast, By Product Type, 2021-2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Platform chemicals
    • 5.2.1 Alcohols
      • 5.2.1.1 Ethanol (bioethanol, cellulosic ethanol)
      • 5.2.1.2 Methanol (bio-methanol)
      • 5.2.1.3 Butanol (bio-butanol)
    • 5.2.2 Organic acids
      • 5.2.2.1 Lactic acid
      • 5.2.2.2 Succinic acid
      • 5.2.2.3 Citric acid
      • 5.2.2.4 Itaconic acid
    • 5.2.3 Glycerol & polyols
      • 5.2.3.1 Glycerol (glycerin)
      • 5.2.3.2 Sorbitol
      • 5.2.3.3 Xylitol
  • 5.3 Biopolymers & resins
    • 5.3.1 Biodegradable polymers
      • 5.3.1.1 Polylactic acid (PLA)
      • 5.3.1.2 Polyhydroxyalkanoates (PHA)
      • 5.3.1.3 Starch-based polymers
    • 5.3.2 Drop-in biopolymers
      • 5.3.2.1 Bio-polyethylene (Bio-PE, Bio-HDPE, Bio-LDPE)
      • 5.3.2.2 Bio-polyethylene terephthalate (Bio-PET)
      • 5.3.2.3 Bio-ethylene vinyl acetate (Bio-EVA)
      • 5.3.2.4 Bio-based aromatics & olefins
    • 5.3.3 Aromatics (BTX)
      • 5.3.3.1 Bio-benzene
      • 5.3.3.2 Bio-toluene
      • 5.3.3.3 Bio-xylene (Bio-PX)
      • 5.3.3.4 Aromatics from lignin
    • 5.3.4 Olefins
      • 5.3.4.1 Bio-ethylene
      • 5.3.4.2 Bio-propylene
  • 5.4 Diols & diacids
    • 5.4.1 Diols
      • 5.4.1.1 Monoethylene glycol (Bio-MEG)
      • 5.4.1.2 propylene glycol (1,2-propanediol)
      • 5.4.1.3 1,3-propanediol
      • 5.4.1.4 1,4-butanediol (Bio-BDO)
      • 5.4.1.5 Isosorbide
    • 5.4.2 Diacids
      • 5.4.2.1 Furandicarboxylic acid (FDCA)
      • 5.4.2.2 Adipic acid
      • 5.4.2.3 Sebacic acid
      • 5.4.2.4 Azelaic acid
  • 5.5 Fatty acids & derivatives
    • 5.5.1 Fatty acids
    • 5.5.2 Fatty acid derivatives
      • 5.5.2.1 Dimer fatty acids
      • 5.5.2.2 Fatty alcohols
      • 5.5.2.3 Fatty acid esters (FAME, FAEE)
  • 5.6 Specialty chemicals
    • 5.6.1 Bio-solvents
    • 5.6.2 Surfactants
    • 5.6.3 Polyols for polyurethanes
    • 5.6.4 Lubricants
  • 5.7 Biointermediates
    • 5.7.1 Liquid biointermediates (Biocrude, Bio-oil)
    • 5.7.2 Gaseous biointermediates (Syngas, Biogas)
    • 5.7.3 Solid/Semi-solid biointermediates (Sugars, FFA, Lactide)

Chapter 6 Market Estimates and Forecast, By Feedstock Type, 2021-2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Biomass-based feedstocks
    • 6.2.1 Agricultural feedstocks
      • 6.2.1.1 Starch crops (Corn, Grain Sorghum, Barley)
      • 6.2.1.2 Sugar crops (Sugarcane, Sugar Beets, Sweet Sorghum)
      • 6.2.1.3 Oil crops (Soybean, Canola, Camelina, Palm)
    • 6.2.2 Agricultural residues
      • 6.2.2.1 Corn stover
      • 6.2.2.2 Wheat straw
      • 6.2.2.3 Bagasse & molasses
    • 6.2.3 Forest-derived feedstocks
      • 6.2.3.1 Logging residues
      • 6.2.3.2 Mill residues (Sawdust, Bark, Black Liquor)
    • 6.2.4 Dedicated energy crops
      • 6.2.4.1 Switchgrass & miscanthus
      • 6.2.4.2 Short-rotation woody crops
      • 6.2.4.3 Algae & marine biomass
  • 6.3 Waste-derived feedstocks
    • 6.3.1 Municipal & organic waste (MSW, Food Waste)
    • 6.3.2 Industrial waste (UCO, Tallow, Distillers Oils)
    • 6.3.3 Agricultural & animal waste (Manure, Litter)
    • 6.3.4 Biogas (Landfill, Digesters)
  • 6.4 Recycled carbon feedstocks
    • 6.4.1 Mechanical recycling
    • 6.4.2 Chemical recycling (pyrolysis, gasification)
  • 6.5 Captured carbon feedstocks
    • 6.5.1 Atmospheric/Direct air capture (DAC)
    • 6.5.2 Industrial point sources (Flue Gases, Off-Gases)
    • 6.5.3 Biogenic CO2 (Fermentation, Anaerobic Digestion)

Chapter 7 Market Estimates and Forecast, By Conversion Technology, 2021-2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Biochemical conversion
    • 7.2.1 Fermentation (Alcoholic, Lactic Acid, Advanced)
    • 7.2.2 Enzymatic hydrolysis
    • 7.2.3 Anaerobic digestion
  • 7.3 Thermochemical conversion
    • 7.3.1 Gasification
    • 7.3.2 Pyrolysis (Fast, Slow)
    • 7.3.3 Thermocatalytic conversion (BioTCat)
  • 7.4 Chemical conversion
    • 7.4.1 Transesterification
    • 7.4.2 Hydrotreatment/hydrotreating
    • 7.4.3 Fischer-tropsch synthesis
    • 7.4.4 Dehydration
    • 7.4.5 Methanol-to-olefins/Aromatics (MTO/MTA)
  • 7.5 Electrochemical & CCU Processes
    • 7.5.1 Electrolysis (Renewable hydrogen production)
    • 7.5.2 Co2 electrochemical reduction
    • 7.5.3 Co2 + h2 synthesis
  • 7.6 Mechanical & physical processes
    • 7.6.1 Mechanical recycling
    • 7.6.2 Chemical recycling

Chapter 8 Market Estimates and Forecast, By End Use Industry, 2021-2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 Packaging industry
  • 8.3 Automotive industry
  • 8.4 Textile & apparel industry
  • 8.5 Construction industry
  • 8.6 Food & beverage industry
  • 8.7 Pharmaceuticals & healthcare industry
  • 8.8 Personal care & cosmetics industry
  • 8.9 Paints & coatings industry
  • 8.10 Agriculture industry
  • 8.11 Chemical industry
  • 8.12 Electronics industry
  • 8.13 Oil & gas industry

Chapter 9 Market Estimates and Forecast, By Region, 2021-2034 (USD Billion) (Kilo Tons)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
    • 9.5.4 Rest of Latin America
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE
    • 9.6.4 Rest of Middle East and Africa

Chapter 10 Company Profiles

  • 10.1 Amyris, Inc.
  • 10.2 Axens
  • 10.3 Avantium N.V.
  • 10.4 BASF SE
  • 10.5 Braskem S.A.
  • 10.6 Cargill, Incorporated
  • 10.7 Corbion N.V.
  • 10.8 Covation Bio
  • 10.9 dsm-firmenich
  • 10.10 Genomatica, Inc.
  • 10.11 India Glycols Limited
  • 10.12 NatureWorks LLC
  • 10.13 Neste Corporation
  • 10.14 Novamont S.p.A.
  • 10.15 Qore - Cargill/HELM Joint Venture
  • 10.16 Roquette
  • 10.17 Toray Industries
  • 10.18 UPM Biochemicals