封面
市场调查报告书
商品编码
1857061

人工智慧驱动的自动化与业务转型:利用自主代理将目标转化为可衡量的成果

AI-driven Automation and Business Transformation: Transforming Objectives into Concrete Results through the Mobilization of Autonomous Agents

出版日期: | 出版商: IDATE | 英文 42 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

本报告分析了现代经济中人工智慧融合所驱动的组织转型,并评估了各机构为端到端自动化做好准备的程度。报告还重点阐述了人工智慧如何从独立应用发展成为贯穿营运的核心服务,并与创新週期、全球投资流动以及不断扩大的国家参与相契合。

本研究检视了监管架构的整合及其对治理的影响,并探讨了可追溯性、人工监督、技术责任、演算法公平性和数位主权等问题。此外,研究也检视了支援智慧自动化的技术和组织模型,包括能够设定目标、规划任务并与人类同事协同工作的AI代理,这种协同模式有助于提升员工的各项技能。

透过对供应链、金融、医疗保健、汽车、零售和电信等行业的案例研究,该报告还指出了关键的成功因素,例如强大的数据治理、透明度、资源共享和有效的变革管理。

此外,本报告还提供了 2025-2035 年自适应工作流程、边缘运算和混合量子技术的展望,包括对估值方法和投资回报率模型的分析。

目录

第1章 摘要整理

第2章 策略性背景

  • 创新週期与投资趋势
  • 对全球AI开发的国家参与
  • 全世界的金融·经济的影响
  • AI相关各种观点

第3章 使用案例和价值创造要素

  • 投资成熟的产业领域
  • 内部业务流程的自动化
  • 代理商型AI
  • AI需求的客制化
  • 汽车领域的使用案例
  • 零售领域的使用案例
  • 通讯业者用使用案例

第4章 组织和人的变革

  • 作用的重新定义
  • 新的组织模式
  • 大规模的技术再教育的必要性
  • 公司内部训练

第5章 经济评估和ROI模式

  • 先进性的评估手法
  • 效益量化架构
  • 宏观经济的影响

第6章 管治,风险,伦理

  • 演算法的公正性和运用上的正义
  • 全世界的法规遵守
  • 主权·法律上的责任·韧性

第7章 展望·发展的轨道

  • 人工智慧未来策略概述
  • 人工智慧未来策略概述
  • 自适应工作流程与智慧边缘
  • 混合量子技术与增强型工作
  • 预测分析

第8章 关于IDATE

简介目录
Product Code: M00185

This report analyses organisational transformations driven by the integration of AI into the contemporary economy and assesses the ability of institutions to adapt to end-to-end automation. It highlights the transition from isolated applications to integrated platforms that position AI as a cross-cutting service at the core of operations, aligned with innovation cycles, global investment flows, and increasing state involvement.

The study explores the consolidation of regulatory frameworks and their implications for governance, addressing issues such as traceability, human oversight, technical accountability, algorithmic fairness, and digital sovereignty. It also examines the technological and organisational models that underpin intelligent automation, including AI agents capable of setting objectives, planning tasks, and working alongside human colleagues in a co-piloting model that supports broad-based skills development.

Through sector-specific use cases - spanning supply chains, finance, healthcare, automotive, retail, and telecommunications - the report identifies key success factors: robust data governance, transparency, resource sharing, and effective change management. It further incorporates an analysis of valuation methods and ROI models, while outlining prospective trajectories for 2025-2035, including adaptive workflows, edge computing, and hybrid quantum technologies.

Table of Contents

1. Executive summary

2. Strategic context

  • 2.1. Innovation cycles and investment
  • 2.2. State involvement in AI development worldwide
  • 2.3. Global financial impact
  • 2.4. AI perspectives

3. Use cases and value drivers

  • 3.1. Sectors currently mature for investment
  • 3.2. Automation of internal processes
  • 3.3. Agentic AI
  • 3.4. Customising AI demand
  • 3.5. Use cases in the automotive sector
  • 3.6. Use cases in the retail sector
  • 3.7. Use cases for telecommunications operators

4. Organisational and human transformation

  • 4.1. Redefining roles
  • 4.2. New organisational models
  • 4.3. The imperative of massive upskilling
  • 4.4. Internal training

5. Economic assessment and ROI models

  • 5.1. Advanced valuation methods
  • 5.2. Framework for quantifying benefits
  • 5.3. Macroeconomic impact

6. Governance, risks and ethics

  • 6.1. Algorithmic fairness and operational justice
  • 6.2. Global regulatory compliance
  • 6.3. Sovereignty, legal responsibility and resilience

7. Outlook and development trajectories

  • 7.1. Strategic overview of the future of AI
  • 7.2. Adaptive workflows and intelligent edge
  • 7.3. Hybrid quantum and augmented work
  • 7.4. Forward-looking analysis

8. About IDATE