封面
市场调查报告书
商品编码
1195534

3D 细胞培养市场 - COVID-19 的增长、趋势、影响和预测 (2023-2028)

3D Cell Culture Market - Growth, Trends, and Forecasts (2023 - 2028)

出版日期: | 出版商: Mordor Intelligence | 英文 116 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

在 2022-2027 年的预测期内,3D 细胞培养市场预计将以 12.5% 的复合年增长率增长。

预计 COVID-19 大流行将对市场产生重大影响。 研究人员使用与 3D 细胞培养相关且适用于气液界面培养的基质 COVID-19,将探索体外细胞培养的全身效应机制和生理微环境中的潜在治疗法。 这是在 COVID-19 研究中使用 3D 细胞培养物的主要原因。 根据 2021 年 3 月发表在 Frontiers Online 上的论文“3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development”,在研究病毒感染时使用 3D 组织培养技术比 2D 组织培养有优势,这也有启示意义用于 COVID-19 研究。 此外,类器官和球体培养等技术比二维培养更准确地概括了病毒感染系统,即使在二维培养无法显示的情况下,也能创造出实现病毒感染所需的形态学和生化行为。

由于使用 3D 细胞培养模型作为体内测试的替代工具、大规模自动化细胞培养系统的开发以及对器官移植的需求不断增长等因素,3D 细胞培养市场呈现稳定增长。增加。 3D 细胞培养和共培养模型不仅能够在比传统 2D 细胞培养更多的体内条件下评估药物安全性和有效性,而且还允许在人体系统中直接进行药物测试,从而推动药物测试的进步。这是一个很大的优势,因为它消除了限制临床结果解释的物种差异。 此外,随着对器官移植的需求不断增加,需要在体外概括人体生理学、病理学和药物反应的复杂方面,这可能会推动对 3D 细胞培养的需求。 据美国卫生资源服务局网站organdonor.gov,2021年10月,2020年全国等待器官移植的人数为107103人。 该网站的数据还显示,美国每年进行 39,000 例器官移植。 因此,器官移植的增加增加了对使用 3D 细胞培养的研究模型的需求。 预计这将推动市场增长。

3D 细胞培养市场趋势

预计产品微芯片领域在预测期内将呈现显着增长

微芯片也称为器官芯片或微系统。 微芯片可以使用微芯片行业的各种技术将微流体技术与在微製造 3D 设备中培养的细胞相结合。 例如,2019 年 6 月发表在 Analytical Methods 上的一项题为“Integration of 3D Cell Culture of PC12 Cells with Electrochemical Detection by Microchips”的研究证实,微芯片可以分别检测多巴胺和去甲肾上腺素的释放。 因此,用 3D 细胞培养设备製成的微芯片将有助于神经递质的实时分析,在预测期内扩展同一部分。

二维 (2D) 培养和动物模型已用于机制研究和药物开发。 然而,二维模型和动物模型无法在细胞类型和特性方面模仿人体组织的生理功能。 因此,传统模型无法准确反映人类,也无法准确预测与药物治疗相关的体内反应。 对此,许多行业都在探索和开发新的平台来替代动物模型和烧瓶细胞培养模型,最近,器官芯片(OoC)成为细胞实验和药物筛选的替代候选者。我在这里。

这些芯片的最大优势是製造成本低廉。 这些芯片允许根据药物剂量测试各种浓度。 预计这些优势将推动对微芯片的需求,主要是为了显着加速科学研究。 近年来,器官芯片技术在药物发现过程中的创新应用取得了进展。 例如,2019 年 3 月,私人太空探索公司 SpaceX 宣布即将发射 Dragon Cargo 太空舱,其中包含四个嵌入活体人体细胞的微芯片,旨在模拟人体生理学的各个方面。 这有望加快分析速度,并为以后的药物开发提供对人体生理学的见解。

因此,由于上述优势和微芯片研究,3D 细胞培养技术有望推动市场增长。

北美市场份额最大,有望保持主导地位

北美在整个 3D 细胞培养市场中占有压倒性的份额,其中美国做出了重大贡献。 美国非常重视研发,过去几年在 3D 细胞培养研究方面投入了大量资金。 结果是该国的技术进步。 特点是3D细胞培养领域的主要专利申请者中有不少来自美国。 美国申请人倾向于在美国和亚洲开发他们的技术。

另外,在过去的几年中,美国在生物技术领域进行了巨大的投资。 生物工程还包括 3D 细胞培养研究。 根据美国国立卫生研究院的数据,2020 年各种生物工程技术的总投资达到 5,646 美元,高于 2019 年的 5,091 美元。 这些因素正在推动美国 3D 细胞培养市场。

此外,还需要在体外模拟人体生理学、病理学和药物反应的复杂元素。 由于对器官移植的需求不断增长,预计该地区也需要 3D 细胞培养。 根据加拿大健康信息研究所的数据,2021年加拿大(包括魁北克)共进行了3014例移植(全器官),比2010年增加了42%。 因此,在预测期内,上述所有因素都有望提振该地区的市场。

3D 细胞培养市场竞争对手分析

3D 细胞培养市场竞争激烈,由多家大型企业组成。 就市场份额而言,目前几家主要参与者主导着市场。 Corning Incorporated、Lonza AG、Merck KGaA 和 Thermo Fisher Scientific 等主要市场参与者的存在加剧了整个市场竞争对手之间的竞争。

其他福利。

  • Excel 格式的市场预测 (ME) 表
  • 三个月的分析师支持

内容

第一章介绍

  • 研究假设和市场定义
  • 调查范围

第二章研究方法论

第 3 章执行摘要

第四章市场动态

  • 市场概览
  • 市场驱动因素
    • 使用 3D 细胞培养模型作为体内测试的替代工具
    • 自动化大规模细胞培养系统的开发
    • 器官移植的需求在增加
  • 市场製约因素
    • 缺乏经验丰富、技能娴熟的专业人员
    • 中小型实验室的预算限制
  • 五力分析分析
    • 新进入者的威胁
    • 买方/消费者议价能力
    • 供应商的议价能力
    • 替代品的威胁
    • 竞争公司之间的敌对关係

第 5 章市场细分(基于价值的市场规模:100 万美元)

  • 按产品分类
    • 基于支架的 3D 细胞培养装置
      • 微图案微孔板
      • 水凝胶
      • 其他产品
    • 无支架 3D 细胞培养装置
      • 悬滴微孔板
      • 微流体 3D 细胞培养
      • 其他产品
    • 微芯片
    • 3D 生物反应器
  • 通过申请
    • 药物发现
    • 组织工程
    • 临床应用
    • 其他用途
  • 最终用户
    • 研究机构和实验室
    • 生物技术公司、製药公司
    • 其他最终用户
  • 按地区
    • 北美
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 意大利
      • 西班牙
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 澳大利亚
      • 韩国
      • 其他亚太地区
    • 中东
      • 海湾合作委员会
      • 南非
      • 其他中东地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲

第六章竞争格局

  • 公司简介
    • BiomimX SRL
    • CN Bio Innovations
    • Corning Incorporated
    • Hurel Corporation
    • InSphero AG
    • Lonza AG
    • Merck KGaA
    • MIMETAS BV
    • Nortis Inc.
    • Thermo Fisher Scientific
    • Sartorius AG
    • Promocell GmbH

第7章 市场机会今后动向

简介目录
Product Code: 54434

The 3D cell culture market is expected to register a CAGR of 12.5% during the forecast period, 2022-2027.

The COVID-19 pandemic is expected to have a significant impact on the market. Researchers working on COVID-19 with relevant matrices for 3D cell culture and suitable for air-liquid interface culture need to investigate in vitro the mechanisms of the systemic consequences of cell cultures and to test potential therapies in a physiological microenvironment. This is the primary reason why 3D cell cultures are used in COVID-19 research. According to an article appearing in Frontiers Online in March 2021 titled, 3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development, there are benefits of using 3D tissue culture techniques over 2D tissue culture when studying viral infections and the implications with regards to studying COVID-19. The study also found that techniques like organoids and spheroid cultures have been shown to replicate systems of viral infection more accurately than 2D cultures and to produce morphology and biochemical behaviors required to allow for viral infection in cases where 2D cultures do not.

The 3D cell culture market is witnessing stable growth due to factors like the use of 3D cell culture models as alternative tools for in vivo testing, the development of large-scale automated cell culture systems, and the rising need for organ transplantation. The 3D cell culture and co-culture models have huge benefits since they not only enable drug safety and efficacy assessment in a more in vivo-like context than traditional 2D cell cultures, but they can eliminate the species differences that pose limitations in the interpretation of the preclinical outcomes, by allowing drug testing directly in human systems. Additionally, with the increase in demand for organ transplantation, there is likely to be a demand for 3D cell cultures as there is a need to recapitulate complex aspects of human physiology, pathology, and drug responses in vitro. According to the organdonor.gov website of the United States Health Resources and Services Administration, in October 2021, 107,103 patients were on the national organ transplant waiting list in the year 2020. Data from the website also states that each year, 39,000 organ transplants are conducted in the United States. Thus, the increase in organ transplants is increasing the demand for research models where 3D cell cultures are used. This is expected to boost the market growth.

3D Cell Culture Market Trends

The Microchips Segment under Product is Expected to see Significant Growth Rate Over the Forecast Period

Microchips are also called organ-on-a-chip or microsystems. Microchips can integrate microfluidic technologies with cells that are cultured within the microfabricated 3D devices, using various techniques from the microchip industry. For instance, the study published in the Analytical Methods in June 2019, titled Integrating 3D cell culture of PC12 cells with microchip-based electrochemical detection, identified that microchip was able to separate and detect dopamine and norepinephrine release. Thus, microchips fabricated with 3D cell culture devices help in the real-time analysis of neurotransmitters boost the segment over the forecast period.

2-dimensional (2D) culture models and animal models have been used for mechanism research and drug development. However, 2D models and animal models cannot mimic the physiology of human tissue in terms of the number of cell types and properties. Thus, conventional models cannot precisely reflect humans and have not been able to accurately predict in vivo responses related to drug treatment. In this regard, many industries have been looking for and developing a new platform to replace animal models or flask cell-culture models, and recently, organs-on-a-chip (OoCs) emerged as an alternative candidate for cell experiments and drug screening.

The main advantage of these chips is that they can be manufactured at a low cost. They allow for testing a wide range of concentrations in the dosage of medicine. This advantage is expected to drive the demand for microchips, primarily to considerably accelerate scientific research. In recent years, there have been innovative uses of organ chip technology for the drug discovery process. For example, in March 2019, the private space exploration company SpaceX announced that it plans to soon launch a Dragon cargo capsule that will contain four microchips embedded with living human cells designed to model various aspects of human physiology. This is expected to speed up analysis and glean insights on human physiology that can be used later for drug development.

As a result, due to the aforementioned advantages and research in microchips, 3D cell culture technologies are expected to drive the market's growth.

North America Captured the Largest Market Share and is Expected to Retain its Dominance

North America dominates the overall 3D cell culture market, with the United States being the major contributor to the market. The United States is focusing on R&D and has been making significant investments in research on 3D cell culture for the past few years. This has resulted in technological advancements in the country. Many American applicants feature among the main patent applicants for the 3D cell culture domain. American applicants tend to develop their technologies in the United States, as well as in Asia.

There have also been huge investments in the bioengineering sector in the United States over the past few years. Bioengineeringinvolves 3D cell culture research too. According to the National Institute of Health, in 2020, the total investment in various bio engineering technologies amounted to USD 5,646, an increase from USD 5,091 in 2019. These factors have augmented the US 3D cell culture market.

Moreover, there is a need to mimic intricate elements of human physiology, pathology, and medication reactions in vitro. There is expected to be a demand for 3D cell cultures as the demand for organ transplantation grows in the region. According to the Canadian Institute for Health Information, in 2021, a total of 3,014 transplant procedures (all organs) were performed in Canada (including Quebec), an increase of 42% since 2010. Thus, all the aforementioned factors are expected to boost the market in the region over the forecast period.

3D Cell Culture Market Competitor Analysis

The 3D cell culture market is highly competitive and consists of several major players. In terms of market share, few of the major players currently dominate the market. The presence of major market players, such as Corning Incorporated, Lonza AG, Merck KGaA, and Thermo Fisher Scientific, is increasing the overall competitive rivalry in the market.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Use of 3D Cell Culture Models as Alternative Tools for In Vivo Testing
    • 4.2.2 Development of Automated Large-scale Cell Culture Systems
    • 4.2.3 Rising Need for Organ Transplantation
  • 4.3 Market Restraints
    • 4.3.1 Lack of Experienced and Skilled Professionals
    • 4.3.2 Budget Restriction for Small- and Medium-sized Laboratories
  • 4.4 Porter's Five Forces Analysis
    • 4.4.1 Threat of New Entrants
    • 4.4.2 Bargaining Power of Buyers/Consumers
    • 4.4.3 Bargaining Power of Suppliers
    • 4.4.4 Threat of Substitute Products
    • 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION (Market Size by Value - USD million)

  • 5.1 By Product
    • 5.1.1 Scaffold-based 3D Cell Cultures
      • 5.1.1.1 Micropatterned Surface Microplates
      • 5.1.1.2 Hydrogels
      • 5.1.1.3 Other Products
    • 5.1.2 Scaffold-free 3D Cell Cultures
      • 5.1.2.1 Hanging drop microplates
      • 5.1.2.2 Microfluidic 3D cell culture
      • 5.1.2.3 Other Products
    • 5.1.3 Microchips
    • 5.1.4 3D Bioreactors
  • 5.2 By Application
    • 5.2.1 Drug Discovery
    • 5.2.2 Tissue Engineering
    • 5.2.3 Clinical Applications
    • 5.2.4 Other Applications
  • 5.3 By End User
    • 5.3.1 Research Laboratories and Institutes
    • 5.3.2 Biotechnology and Pharmaceutical Companies
    • 5.3.3 Other End Users
  • 5.4 Geography
    • 5.4.1 North America
      • 5.4.1.1 United States
      • 5.4.1.2 Canada
      • 5.4.1.3 Mexico
    • 5.4.2 Europe
      • 5.4.2.1 Germany
      • 5.4.2.2 United Kingdom
      • 5.4.2.3 France
      • 5.4.2.4 Italy
      • 5.4.2.5 Spain
      • 5.4.2.6 Rest of Europe
    • 5.4.3 Asia-Pacific
      • 5.4.3.1 China
      • 5.4.3.2 Japan
      • 5.4.3.3 India
      • 5.4.3.4 Australia
      • 5.4.3.5 South Korea
      • 5.4.3.6 Rest of Asia-Pacific
    • 5.4.4 Middle-East
      • 5.4.4.1 GCC
      • 5.4.4.2 South Africa
      • 5.4.4.3 Rest of Middle-East
    • 5.4.5 South America
      • 5.4.5.1 Brazil
      • 5.4.5.2 Argentina
      • 5.4.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 BiomimX SRL
    • 6.1.2 CN Bio Innovations
    • 6.1.3 Corning Incorporated
    • 6.1.4 Hurel Corporation
    • 6.1.5 InSphero AG
    • 6.1.6 Lonza AG
    • 6.1.7 Merck KGaA
    • 6.1.8 MIMETAS BV
    • 6.1.9 Nortis Inc.
    • 6.1.10 Thermo Fisher Scientific
    • 6.1.11 Sartorius AG
    • 6.1.12 Promocell GmbH

7 MARKET OPPORTUNITIES AND FUTURE TRENDS