封面
市场调查报告书
商品编码
1530736

2030 年光子积体电路市场预测:按整合类型、材料类型、组件、应用、最终用户和地区进行的全球分析

Photonic Integrated Circuits Market Forecasts to 2030 - Global Analysis By Integration Type (Monolithic Integration, Hybrid Integration and Module Integration), Material Type, Component, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC的数据,2024年全球光子积体电路市场规模为151亿美元,预计到2030年将达到507亿美元,预测期内复合年增长率为22.4%。

光子积体电路(PIC)是一种先进的半导体元件,在单一晶片上整合了多种光子功能,类似于电子积体电路,但涉及光。 PIC 操纵光子(光粒子)用于各种应用,包括通讯、感测和计算。这些电路将雷射、调变、检测器和波导管等组件组合在单一基板上,从而形成小型且高效的设备。

高速资料传输的需求不断增长

随着全球通讯网路努力满足串流媒体服务、云端处理、物联网连接和 5G 网路驱动的日益增长的频宽需求,PIC 提供了关键优势。与传统电子元件相比,这些积体电路提高了光纤的资料传输速度,支援更高的容量和更低的延迟。扩展光纤通讯系统的功能至关重要,使提供者能够提供更快、更可靠的连接解决方案,以满足消费者和企业的需求。

复杂的整合

雷达系统通常需要整合各种组件,包括讯号处理器、天线、资料融合演算法和电源管理系统。这种复杂性增加了设计复杂性、开发时间和製造成本。此外,将新技术整合到现有雷达系统中可能会产生相容性问题,并且需要大量的测试和检验流程以确保性能和可靠性。这些挑战减缓了部署进度,增加了整体计划成本,并使製造商难以满足客户期望和预算限制。

通讯和资料中心的成长

光纤网路和无线通讯技术等通讯基础设施的扩展增加了对雷达系统的需求,以保护这些关键设施免受入侵和破坏等潜在威胁。短程空中监视雷达提供即时监视功能,可增强这些高价值资产周围的安全和情境察觉。这种扩张可能会导致对边境监视、空域监视和边境安全的需求增加,这些领域都需要短程空中监视雷达。

缺乏标准化

缺乏标准化通讯协定和规范可能会导致雷达性能变化、不同雷达系统之间的互通性问题以及雷达系统与其他防御和安全技术整合的困难。此外,缺乏标准化也会影响采购流程,不同的标准或缺乏标准可能会导致买家和政府机构的混乱和决策延迟。这可能会影响计划进度并增加与客製化和整合工作相关的成本。

COVID-19 的影响:

不断上升的安全担忧以及对弹性防御和监视系统的需求推动了经济復苏。随着威胁的演变,各国政府优先考虑国家安全,并加速对边防安全、关键基础设施保护和国防现代化的投资。一旦经济稳定,市场就会復苏,重新关注雷达增强功能,以提高国防和安全应用中的情境察觉和营运效率。

混合整合领域预计将在预测期内成为最大的领域

短程空中监视雷达市场中的混合整合结合了不同技术和子系统的优势,例如具有互补感测器和资料处理能力的雷达系统,从而在预测期内实现最大的混合整合预期。这种方法透过利用每个组件的独特优势来提高雷达性能,例如将用于远距检测的雷达与用于精确目标识别和追踪的红外线和声波感测器相结合。

预测期内,光放大器领域预估复合年增长率最高

光放大器是放大光讯号而不将其转换为电讯号的设备,从而允许雷达系统中使用的光纤通讯链路具有更长的传输距离和更高的讯号完整性。在雷达应用中,光学放大器提高了灵敏度和探测范围,提高了雷达在更远距离探测更小目标和讯号的能力。这种能力对于提高监视、防御和安全应用中的情境察觉和营运效率以及推动市场发展至关重要。

占比最大的地区:

预计北美在预测期内将占据最大的市场占有率,因为它涵盖了专注于探测和追踪相对近距离内的空中物体的雷达系统的行业。这些雷达系统对于军事防御、边防安全、机场运作和关键基础设施保护等应用至关重要。此外,该市场的关键驱动因素包括雷达技术的持续进步、国防和安全投资的增加以及增强都市区和偏远地区情境察觉的需求。

复合年增长率最高的地区:

由于政府国防预算、监管要求、技术创新和地缘政治发展等因素,亚太地区预计在预测期内将维持最高复合年增长率。这家北美公司专注于短程空中监视雷达,不断创新,提供满足不断变化的客户需求的解决方案,包括提高国防和安全应用的性能、整合能力和营运效率。

免费客製化服务:

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球光子积体电路市场:依整合类型

  • 单晶片集成
  • 混合整合
  • 模组集成

第六章全球光子积体电路市场:依材料类型

  • 硅胶底座
  • 磷化铟 (InP) 基
  • 砷化镓 (GaAs) 基
  • 氮化硅 (SiN) 基
  • 其他材料类型

第七章全球光子积体电路市场:依组成部分

  • 雷射
  • 调变
  • 检测器
  • 波导
  • 光放大器
  • 过滤器和分离器
  • 光开关和耦合器
  • 整合光路
  • 其他组件

第八章全球光子积体电路市场:依应用分类

  • 光纤网路
  • 资料中心
  • 生物医学感测与环境感测
  • 光连接模组
  • 讯号路由和交换
  • 显示和扩增实境(AR)/虚拟实境 (VR)
  • 量子光电
  • 其他用途

第九章全球光子积体电路市场:依最终用户分类

  • 通讯
  • 医疗保健和生命科学
  • 家电
  • 航太和国防
  • 工业/製造
  • 汽车/交通
  • 其他最终用户

第十章全球光子积体电路市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第十一章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章 公司概况

  • Agilent Technologies, Inc.
  • Aifotec AG
  • Alcatel-Lucent
  • Avago Technologies Finisar Corporation
  • Caliopa
  • Ciena Corporation
  • Cisco Systems Inc.
  • Colorchip Ltd
  • Effect Photonics
  • Emcore Corporation
  • Enablence Technologies Inc.
  • Hewlett Packard
  • II-VI Incorporated
  • Infinera Corporation
  • Intel Corporation
  • Lumentum Holdings
  • NeoPhotonics Corporation
  • POET Technologies
  • Source Photonics Inc.
Product Code: SMRC26848

According to Stratistics MRC, the Global Photonic Integrated Circuits Market is accounted for $15.1 billion in 2024 and is expected to reach $50.7 billion by 2030 growing at a CAGR of 22.4% during the forecast period. Photonic Integrated Circuits (PICs) are advanced semiconductor devices that integrate multiple photonic functions onto a single chip, akin to electronic integrated circuits but for light. PICs manipulate photons (light particles) for various applications in telecommunications, sensing, and computing. These circuits combine components such as lasers, modulators, detectors, and waveguides on a single substrate, enabling compact and efficient devices.

Market Dynamics:

Driver:

Increasing demand for high-speed data transmission

Telecommunications networks globally strive to meet escalating bandwidth requirements driven by streaming services, cloud computing, IoT connectivity, and 5G networks, PICs offer critical advantages. These integrated circuits enable faster data transmission rates over optical fibers compared to traditional electronic counterparts, supporting higher capacities and lower latency. They are pivotal in expanding the capabilities of optical communication systems, enabling providers to deliver faster, more reliable connectivity solutions to meet consumer and enterprise demands.

Restraint:

Complexity of integration

Radar systems often require integration of diverse components such as signal processors, antennas, data fusion algorithms, and power management systems. This complexity increases design complexity, development time, and manufacturing costs. Moreover, integrating new technologies into existing radar systems can lead to compatibility issues and require extensive testing and validation processes to ensure performance and reliability. These challenges can delay deployment schedules and increase overall project costs, making it harder for manufacturers to meet customer expectations and budget constraints.

Opportunity:

Growth of telecommunications and data centers

The expansion of telecommunications infrastructure, including fiber-optic networks and wireless communication technologies, drives demand for radar systems to protect these critical facilities from potential threats such as intrusion or sabotage. Short Range Air Surveillance Radars provide real-time monitoring capabilities that enhance security and situational awareness around these high-value assets. This expansion can lead to greater demands for border surveillance, airspace monitoring, and perimeter security, all of which are areas where Short Range Air Surveillance Radars are essential.

Threat:

Lack of standardization

Standardized protocols and specifications, there can be inconsistencies in radar performance, interoperability issues between different radar systems, and difficulties in integrating radar systems with other defense and security technologies. Further lack of standardization also affects procurement processes, as different standards or lack thereof can lead to confusion and delays in decision-making for buyers and government agencies. This can impact project timelines and increase costs associated with customization and integration efforts.

Covid-19 Impact:

Heightened security concerns and the need for resilient defense and surveillance systems spurred recovery. Investments in border security, critical infrastructure protection, and defense modernization accelerated as governments prioritized national security amidst evolving threats. As economies stabilized, the market rebounded with renewed focus on enhancing radar capabilities for enhanced situational awareness and operational efficiency in defense and security applications.

The hybrid integration segment is expected to be the largest during the forecast period

The hybrid integration is expected to be the largest during the forecast period because hybrid integration in the Short Range Air Surveillance Radar market combines the strengths of different technologies and subsystems, such as radar systems with complementary sensors or data processing capabilities. This approach enhances radar performance by leveraging the specific advantages of each component, such as radar for long-range detection combined with infrared or acoustic sensors for precise target identification and tracking.

The optical amplifiers segment is expected to have the highest CAGR during the forecast period

The optical amplifiers segment is expected to have the highest CAGR during the forecast period as these devices amplify optical signals without converting them into electrical signals, enabling longer transmission distances and higher signal integrity in fiber-optic communication links used in radar systems. In radar applications, optical amplifiers increase the sensitivity and range of detection, improving the radar's ability to detect smaller targets or signals over greater distances. This capability is crucial for enhancing situational awareness and operational effectiveness in surveillance, defense, and security applications boosting the market.

Region with largest share:

North America is projected to hold the largest market share during the forecast period as it encompasses the sector focused on radar systems designed for detecting and tracking airborne objects within relatively short distances. These radar systems are crucial for applications such as military defense, border security, airport operations, and critical infrastructure protection. Moreover key drivers of this market include ongoing advancements in radar technology, increasing investments in defense and security, and the need for enhanced situational awareness in urban and remote environments.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period owing to factors such as government defense budgets, regulatory requirements, technological innovation, and geopolitical developments. Companies in North America specializing in Short Range Air Surveillance Radars continuously innovate to offer solutions that meet evolving customer demands for improved performance, integration capabilities, and operational efficiency in defense and security applications.

Key players in the market

Some of the key players in Photonic Integrated Circuits market include Agilent Technologies, Inc., Aifotec AG, Alcatel-Lucent, Avago Technologies Finisar Corporation, Caliopa, Ciena Corporation, Cisco Systems Inc., Colorchip Ltd, Effect Photonics, Emcore Corporation, Enablence Technologies Inc., Hewlett Packard, II-VI Incorporated, Infinera Corporation, Intel Corporation, Lumentum Holdings, NeoPhotonics Corporation, POET Technologies and Source Photonics Inc.

Key Developments:

In July 2024, Cisco and HTX sign MOU to Pilot 5G and AI technologies to enhance Homeland Security. Both parties will collaborate in the research and development of 5G and AI technologies to digitally transform public safety, security and network operations in Singapore.

In June 2024, Agilent Announces Cutting-Edge Advances in GC/MS and LC/Q-TOF Technology at ASMS 2024. These instruments exemplify Agilent's unwavering commitment to advancing scientific discovery through innovative instrumentation, significantly shaping the landscape of mass spectrometry.

In June 2024, Cisco launches country digital transformation program in vietnam to supercharge its economic growth. The program will see investments in key areas like 5G, smart manufacturing, financial services and digital government.

Integration Types Covered:

  • Monolithic Integration
  • Hybrid Integration
  • Module Integration

Material Types Covered:

  • Silicon-based
  • Indium Phosphide (InP)-based
  • Gallium Arsenide (GaAs)-based
  • Silicon Nitride (SiN)-based
  • Other Material Types

Components Covered:

  • Lasers
  • Modulators
  • Detectors
  • Waveguides
  • Optical Amplifiers
  • Filters & Splitters
  • Optical Switches & Coupler
  • Integrated Photonic Circuits
  • Other Components

Applications Covered:

  • Optical Communication Networks
  • Data Centers
  • Biomedical Sensing & Environmental Sensing
  • Optical Interconnects
  • Signal Routing & Switching
  • Displays and Augmented Reality (AR)/Virtual Reality (VR)
  • Quantum Photonics
  • Other Applications

End Users Covered:

  • Telecommunications
  • Healthcare & Life Sciences
  • Consumer Electronics
  • Aerospace & Defense
  • Industrial & Manufacturing
  • Automotive & Transportation
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Photonic Integrated Circuits Market, By Integration Type

  • 5.1 Introduction
  • 5.2 Monolithic Integration
  • 5.3 Hybrid Integration
  • 5.4 Module Integration

6 Global Photonic Integrated Circuits Market, By Material Type

  • 6.1 Introduction
  • 6.2 Silicon-based
  • 6.3 Indium Phosphide (InP)-based
  • 6.4 Gallium Arsenide (GaAs)-based
  • 6.5 Silicon Nitride (SiN)-based
  • 6.6 Other Material Types

7 Global Photonic Integrated Circuits Market, By Component

  • 7.1 Introduction
  • 7.2 Lasers
  • 7.3 Modulators
  • 7.4 Detectors
  • 7.5 Waveguides
  • 7.6 Optical Amplifiers
  • 7.7 Filters & Splitters
  • 7.8 Optical Switches & Coupler
  • 7.9 Integrated Photonic Circuits
  • 7.10 Other Components

8 Global Photonic Integrated Circuits Market, By Application

  • 8.1 Introduction
  • 8.2 Optical Communication Networks
  • 8.3 Data Centers
  • 8.4 Biomedical Sensing & Environmental Sensing
  • 8.5 Optical Interconnects
  • 8.6 Signal Routing & Switching
  • 8.7 Displays and Augmented Reality (AR)/Virtual Reality (VR)
  • 8.8 Quantum Photonics
  • 8.9 Other Applications

9 Global Photonic Integrated Circuits Market, By End User

  • 9.1 Introduction
  • 9.2 Telecommunications
  • 9.3 Healthcare & Life Sciences
  • 9.4 Consumer Electronics
  • 9.5 Aerospace & Defense
  • 9.6 Industrial & Manufacturing
  • 9.7 Automotive & Transportation
  • 9.8 Other End Users

10 Global Photonic Integrated Circuits Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Agilent Technologies, Inc.
  • 12.2 Aifotec AG
  • 12.3 Alcatel-Lucent
  • 12.4 Avago Technologies Finisar Corporation
  • 12.5 Caliopa
  • 12.6 Ciena Corporation
  • 12.7 Cisco Systems Inc.
  • 12.8 Colorchip Ltd
  • 12.9 Effect Photonics
  • 12.10 Emcore Corporation
  • 12.11 Enablence Technologies Inc.
  • 12.12 Hewlett Packard
  • 12.13 II-VI Incorporated
  • 12.14 Infinera Corporation
  • 12.15 Intel Corporation
  • 12.16 Lumentum Holdings
  • 12.17 NeoPhotonics Corporation
  • 12.18 POET Technologies
  • 12.19 Source Photonics Inc.

List of Tables

  • Table 1 Global Photonic Integrated Circuits Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Photonic Integrated Circuits Market Outlook, By Integration Type (2022-2030) ($MN)
  • Table 3 Global Photonic Integrated Circuits Market Outlook, By Monolithic Integration (2022-2030) ($MN)
  • Table 4 Global Photonic Integrated Circuits Market Outlook, By Hybrid Integration (2022-2030) ($MN)
  • Table 5 Global Photonic Integrated Circuits Market Outlook, By Module Integration (2022-2030) ($MN)
  • Table 6 Global Photonic Integrated Circuits Market Outlook, By Material Type (2022-2030) ($MN)
  • Table 7 Global Photonic Integrated Circuits Market Outlook, By Silicon-based (2022-2030) ($MN)
  • Table 8 Global Photonic Integrated Circuits Market Outlook, By Indium Phosphide (InP)-based (2022-2030) ($MN)
  • Table 9 Global Photonic Integrated Circuits Market Outlook, By Gallium Arsenide (GaAs)-bas (2022-2030) ($MN)
  • Table 10 Global Photonic Integrated Circuits Market Outlook, By Silicon Nitride (SiN)-based (2022-2030) ($MN)
  • Table 11 Global Photonic Integrated Circuits Market Outlook, By Other Material Types (2022-2030) ($MN)
  • Table 12 Global Photonic Integrated Circuits Market Outlook, By Component (2022-2030) ($MN)
  • Table 13 Global Photonic Integrated Circuits Market Outlook, By Lasers (2022-2030) ($MN)
  • Table 14 Global Photonic Integrated Circuits Market Outlook, By Modulators (2022-2030) ($MN)
  • Table 15 Global Photonic Integrated Circuits Market Outlook, By Detectors (2022-2030) ($MN)
  • Table 16 Global Photonic Integrated Circuits Market Outlook, By Waveguides (2022-2030) ($MN)
  • Table 17 Global Photonic Integrated Circuits Market Outlook, By Optical Amplifiers (2022-2030) ($MN)
  • Table 18 Global Photonic Integrated Circuits Market Outlook, By Filters & Splitters (2022-2030) ($MN)
  • Table 19 Global Photonic Integrated Circuits Market Outlook, By Optical Switches & Coupler (2022-2030) ($MN)
  • Table 20 Global Photonic Integrated Circuits Market Outlook, By Integrated Photonic Circuits (2022-2030) ($MN)
  • Table 21 Global Photonic Integrated Circuits Market Outlook, By Other Components (2022-2030) ($MN)
  • Table 22 Global Photonic Integrated Circuits Market Outlook, By Application (2022-2030) ($MN)
  • Table 23 Global Photonic Integrated Circuits Market Outlook, By Optical Communication Networks (2022-2030) ($MN)
  • Table 24 Global Photonic Integrated Circuits Market Outlook, By Data Centers (2022-2030) ($MN)
  • Table 25 Global Photonic Integrated Circuits Market Outlook, By Biomedical Sensing & Environmental Sensing (2022-2030) ($MN)
  • Table 26 Global Photonic Integrated Circuits Market Outlook, By Optical Interconnects (2022-2030) ($MN)
  • Table 27 Global Photonic Integrated Circuits Market Outlook, By Signal Routing & Switching (2022-2030) ($MN)
  • Table 28 Global Photonic Integrated Circuits Market Outlook, By Displays and Augmented Reality (AR)/Virtual Reality (VR) (2022-2030) ($MN)
  • Table 29 Global Photonic Integrated Circuits Market Outlook, By Quantum Photonics (2022-2030) ($MN)
  • Table 30 Global Photonic Integrated Circuits Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 31 Global Photonic Integrated Circuits Market Outlook, By End User (2022-2030) ($MN)
  • Table 32 Global Photonic Integrated Circuits Market Outlook, By Telecommunications (2022-2030) ($MN)
  • Table 33 Global Photonic Integrated Circuits Market Outlook, By Healthcare & Life Sciences (2022-2030) ($MN)
  • Table 34 Global Photonic Integrated Circuits Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 35 Global Photonic Integrated Circuits Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 36 Global Photonic Integrated Circuits Market Outlook, By Industrial & Manufacturing (2022-2030) ($MN)
  • Table 37 Global Photonic Integrated Circuits Market Outlook, By Automotive & Transportation (2022-2030) ($MN)
  • Table 38 Global Photonic Integrated Circuits Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.