光子量子电脑市场
市场调查报告书
商品编码
1767025

光子量子电脑市场

Markets for Photonic Quantum Computers

出版日期: | 出版商: Inside Quantum Technology | 英文 58 Pages | 订单完成后即时交付

价格
简介目录

光子量子电脑正快速崛起,成为一个可行的量子运算平台,其驱动力源自于人们坚信它们能够在(1)室温下进行运算,并且可以使用(2)电信业现成的光网路元件以低成本建构。本报告的主要目标是分析、量化和预测以光子学为主要架构的量子电脑的商业潜力。到2030年,全球光子量子电脑市场预计将达到11亿美元,到2035年将成长到68亿美元以上。在供应方面,新的参与者将进入光子计算机市场。在需求方面,量子电脑的整体需求将大幅成长,这种高成长将对光子量子运算产生影响。

目前,已有20家供应商将全端光子量子电脑商业化,其中PsiQuantum迄今筹集的资金最多,Xanadu也引起了广泛关注。本报告分析了所有全端光子电脑製造商的产品和市场策略,包括北京博色量子科技、Mitre Corporation、NTT、ORCA、Photonic、Quickly Quantum、PsiQuantum、Q.Ant、QC82、Quandela、Quanfluence、Quantum Computing, Inc、Quantum Source Labs、QuiX、Quantur、QuiX、Quant、Tumium、Quantraium、QuiXdux、Stium X

本报告概述了新兴光子量子系统领域的元件、PIC 和软体供应商,并对光子电脑市场进行了 10 年预测。预测以单位数和价值形式提供,涵盖三个细分市场:实用级、高效能运算/企业级和其他。报告也专门有一章探讨了光子量子电脑的应用,重点介绍了光子电脑尤其受青睐的领域。

目录

第1章 光子量子电脑:产品和产业的背景

  • 报告书的背景
  • 光子量子电脑的优点
  • 光子量子电脑的课题
  • 光子量子电脑的种类
  • 光子量子电脑晶片和晶片组
    • 研究机关及大学
    • 商业供应商
  • 零组件和子系统
    • 雷射和光源
    • 频率com
    • 光子检测器
    • 控制晶片
    • SDK
  • 光子量子电脑(QC)的新的架构
    • CV架构
    • T中心的架构
  • 价值量子运算品牌社群:光子量子运算的适用性
    • Quandela Cloud
    • Xanadu
  • 光子量子计算机产业结构
    • 俄罗斯和中国
  • 新的chapter

第2章 光子量子电脑和相关产品

  • Bose Quantum Technology/QBoson(中国)
    • 目前产品
    • 基本客群与市场
  • Electronics and Telecommunications Research Institute(ETRI)(韩国)
  • InfamousPlatypus(美国)
    • 基本客群与竞争
  • MITRE Corporation/CVE(美国)
    • 量子登月计划
    • 基本客群
  • NTT(日本)
    • 目前调查
  • ORCA Computing(英国)
    • PT 系列产品
    • COTS 使用
    • ORCA 客户:HPC 使用
  • Photonic(加拿大)
    • 产品和技术的演进
    • 基本客群与竞争
  • PsiQuantum(美国)
    • 技术的演进
    • 基本客群与竞争
  • Q.Ant(德国)
  • QC82(美国)
    • 公司目标
    • 被估计的基本客群
  • Quandela
    • 科技和生产
    • kuanderakuraudo
    • 基本客群与竞争
  • Quanfluence(印度)
  • Quantum Computing, Inc.(美国)
    • 目前产品和服务
    • 基本客群与竞争
  • Quantum Source Labs(以色列)
    • 电脑策略
    • 基本客群
  • QuiX Quantum(荷兰)
    • 目前产品
    • 客户
  • Rotonium(义大利)
    • 调查与产品开发的方向性
    • 製造业
    • 潜在的基本客群
  • Spooky Manufacturing(美国)
  • TundraSystems Global LTD(英国)
  • TuringQ(中国)
    • 量子电脑的提供和生产
    • 基本客群
  • Xanadu Quantum Technologies(加拿大)
    • 产品和科技
    • 製造业
    • 客户和合作伙伴
    • Xanadu Cloud云端的兴亡
  • 零组件
    • ID Quantique(瑞士)
    • M-Labs(中国)
    • Menlo Systems(德国)
    • Nanofiber Quantum Technologies(日本)
    • Nexus Photonics(美国)
    • Nicslab(美国)
    • Sparrow Quantum(丹麦)
    • Toptica Photonics(德国)
    • Toshiba(日本)
    • Vescent(美国)
  • 服务
    • Iceberg Quantum(澳洲)
  • 软体
    • QC Design(德国)
    • QMware(瑞士)
  • 平台
    • qBraid(美国)
  • 研究机关和大学
    • Centre for Quantum Computation and Communication Technology(CQC2T)(澳洲)
    • Griffith University(澳洲)
    • Harvard University(美国)
    • Institute for Photonic Quantum Systems(PhoQC)(德国)
    • Israeli Quantum Computing Center (IQCC)(以色列)
    • 南京市 University(中国)
    • National Quantum Computing Center(NQCC)(英国)
    • National Quantum Laboratory(NQL)(俄罗斯)
    • Niels Bohr Institute(NBI)(丹麦)
    • Poznan Supercomputing and Networking Center ((PSNC)
    • Queensland University of Technology(QUT)(澳洲)
    • RIKEN(日本)
    • Russian Quantum Center(俄罗斯)
    • Sandia National Laboratory (美国)
    • Simon Fraser University(加拿大)
    • University of Arizona(美国)
    • University of Bristol (英国)
    • University of New Mexico(美国)
    • University of Queensland(澳洲)
    • University of Science & Technology of China(USTC)
    • University of Southern Queensland (UniSQ)(澳洲)
    • University of the Sunshine Coast(澳洲)
    • University of Virginia(UVA)(美国)
    • University of Washington(UW)(美国)
    • University of Waterloo(加拿大)

第3章 光子量子电脑的标的用途

  • 研究设备和研究室
  • 量化学和材料科学
  • 金融和银行
  • 军事,谍报,航太
  • 汽车·运输
  • 能源产业
  • 光子电脑:特定的适合场所的设计
    • 光子电脑和HPC:量子超级电脑
    • 资料中心规模的光子量子电脑
    • 机架式型光子电脑
    • 光量孩子边缘运算
  • 量子+AI

第4章 光子量子电脑的10年预测

  • 调查手法
  • 出货预测
    • 初期出货
    • 今后5年的成长
  • 各产品类型出货
  • 替代Scenario
  • 关于分析师
简介目录
Product Code: IQT-PHOTONIC2025-0725

Photonic Quantum Computers are quickly emerging as a viable quantum computing platform driven by the belief that they can (1) compute at room temperatures and (2) can be built at low cost using off-the-shelf optical networking components intended for the telecom industry. Our primary goal in this report is to analyze and quantify the commercial potential of quantum computers using photonics for their main fabric and to forecast their sales. We show how by 2030, worldwide revenues from photonic quantum computers will have reached US$1.1 billions shipped but this number will grow to more than US$6.8 billions by 2035. On the supply side new firms will be entering the photonic computer market. On the demand side, the demand for quantum computers as a whole will increase dramatically, and this high growth will impact photonic QCs.

There are already around 20 vendors commercializing full stack photonic quantum at the present time with PsiQuantum having attracted the largest funding to date and Xanadu attracting considerable attention too. This report, analyzes the product/market strategies of all the manufacturers of full-stack photonic computers including Beijing Bose Quantum, Technology, Mitre Corporation, NTT, ORCA, Photonic, Quickly Quantum, PsiQuantum, Q.Ant,QC82, Quandela, Quanfluence, Quantum Computing, Inc., Quantum Source Labs, QuiXQuantum, Rotonium, Tundra Systems, Turing and Xanadu Quantum Technologies.

In this report we also profile the relevant component, PIC and software suppliers to the budding photonic quantum systems sector as well as including ten-year forecasts of photonic computer markets. The forecasts are broken out by three types of machines "Utility-Class," "HPC/enterprise" machines and "Other" forecasts are provided in both volume and value terms. We also include a Chapter on applications for photonic quantum computers, noting where photonic where photonic machines are especially favored.

Table of Contents

Chapter One: Photonic Quantum Computers: Products and Industry Background

  • 1.1. Background to Report
  • 1.2. Advantages of Photonic Quantum Computers
  • 1.3. Challenges of Photonic Quantum Computers
  • 1.4. Types of Photonic Quantum Computers
  • 1.5. Chips and Chipsets for Photonic Quantum Computers
    • 1.5.1. Research Institutes and Universities
    • 1.5.2. Commercial Suppliers
  • 1.6. Components and Subsystems
    • 1.6.1. Lasers and Light Sources
    • 1.6.2. Frequency Combs
    • 1.6.3. Photon Detectors
    • 1.6.4. Control Chips
    • 1.6.5. SDKs
  • 1.7. Novel Architectures for Photonic QCs
    • 1.7.1. CV Architectures
    • 1.7.2. T Centre architecture
  • 1.8. The Value QC Brand Communities: Applicability to Photonic QCs
    • 1.8.1. Quandela Cloud
    • 1.8.2. Xanadu
  • 1.9. Photonic Quantum Computer Industry Structure
    • 1.9.1. Russia and China
  • 1.10. The Next Chapter

Chapter Two: Photonic Quantum Computers and Related Products

  • 2.1. Bose Quantum Technology/QBoson (China)
    • 2.1.1. Current Products
    • 2.1.2. Customer Base and Markets
  • 2.2. Electronics and Telecommunications Research Institute (ETRI) (Korea)
  • 2.3. InfamousPlatypus (United States)
    • 2.3.1. Customer Base and Competition
  • 2.4. MITRE Corporation/CVE (United States)
    • 2.4.1. Quantum Moonshot
    • 2.4.2. Customer Base
  • 2.5. NTT (Japan)
    • 2.5.1. Current Research
  • 2.6. ORCA Computing (United Kingdom)
    • 2.6.1. PT Series Products
    • 2.6.2. Use of COTS
    • 2.6.3. ORCA Customers: Use with HPC
  • 2.7. Photonic (Canada)
    • 2.7.1. Product and Technology Evolution
    • 2.7.2. Customer Base and Competition
  • 2.8. PsiQuantum (United States)
    • 2.8.1. Technical Evolution
    • 2.8.2. Customer Base and Competition
  • 2.9. Q.Ant (Germany)
  • 2.10. QC82 (United States)
    • 2.10.1. Goals of Company
    • 2.10.2. Expected Customer Base
  • 2.11. Quandela
    • 2.11.1. Technology and Manufacturing
    • 2.11.2. Quandela Cloud
    • 2.11.3. Customer Base and Competition
  • 2.12. Quanfluence (India)
  • 2.13. Quantum Computing, Inc. United States)
    • 2.13.1. Current Products and Services
    • 2.13.2. Customer Base and Competition
  • 2.14. Quantum Source Labs (Israel)
    • 2.14.1. Computer Strategy
    • 2.14.2. Customer Base
  • 2.15. QuiX Quantum (The Netherlands)
    • 2.15.1. Current Products
    • 2.15.2. Customers
  • 2.16. Rotonium (Italy)
    • 2.16.1. Direction of Research and Product Development
    • 2.16.2. Manufacturing
    • 2.16.3. Possible Customer Base
  • 2.17. Spooky Manufacturing (United States)
  • 2.18. TundraSystems Global LTD (United Kingdom)
  • 2.19. TuringQ (China)
    • 2.19.1. Quantum Computer Offerings and Manufacturing
    • 2.19.2. Customer Base
  • 2.20. Xanadu Quantum Technologies (Canada)
    • 2.20.1. Products and Technology
    • 2.20.2. Manufacturing
    • 2.20.3. Customers and Partners
    • 2.20.4. The Rise and Fall of Xanadu Cloud
  • 2.21. Components
    • 2.21.1. ID Quantique (Switzerland)
    • 2.21.2. M-Labs (China)
    • 2.21.3. Menlo Systems (Germany)
    • 2.21.4. Nanofiber Quantum Technologies (Japan)
    • 2.21.5. Nexus Photonics (United States)
    • 2.21.6. Nicslab (United States)
    • 2.21.7. Sparrow Quantum (Denmark)
    • 2.21.8. Toptica Photonics (Germany)
    • 2.21.9. Toshiba (Japan)
    • 2.21.10. Vescent (United States)
  • 2.22. Services
    • 2.22.1. Iceberg Quantum (Australia)
  • 2.23. Software
    • 2.23.1. QC Design (Germany)
    • 2.23.2. QMware (Switzerland)
  • 2.24. Platforms
    • 2.24.1. qBraid (United States)
  • 2.25. Research and Universities
    • 2.25.1. Centre for Quantum Computation and Communication Technology (CQC2T) (Australia)
    • 2.25.2. Griffith University (Australia)
    • 2.25.3. Harvard University ( United States)
    • 2.25.4. Institute for Photonic Quantum Systems (PhoQC) (Germany)
    • 2.25.5. Israeli Quantum Computing Center (IQCC) (Israel)
    • 2.25.6. Nanjing University (China)
    • 2.25.7. National Quantum Computing Center (NQCC) (United Kingdom)
    • 2.25.8. National Quantum Laboratory (NQL) (Russia)
    • 2.25.9. Niels Bohr Institute (NBI) (Denmark)
    • 2.25.10. Poznan Supercomputing and Networking Center (PSNC)
    • 2.25.11. Queensland University of Technology (QUT) (Australia)
    • 2.25.12. RIKEN (Japan)
    • 2.25.13. Russian Quantum Center (Russia)
    • 2.25.14. Sandia National Laboratory (United States)
    • 2.25.15. Simon Fraser University (Canada)
    • 2.25.16. University of Arizona (United States)
    • 2.25.17. University of Bristol (United Kingdom)
    • 2.25.18. University of New Mexico (United States)
    • 2.25.19. University of Queensland (Australia)
    • 2.25.20. University of Science & Technology of China (USTC)
    • 2.25.21. University of Southern Queensland (UniSQ) (Australia)
    • 2.25.22. University of the Sunshine Coast (Australia)
    • 2.25.23. University of Virginia (UVA) (United States)
    • 2.25.24. University of Washington (UW) (United States)
    • 2.25.25. University of Waterloo (Canada)

Chapter Three: Target Applications for Photonic Quantum Computers

  • 3.1. Research Machines and Laboratories
  • 3.2. Quantum Chemistry and Materials Science
  • 3.3. Finance and Banking
  • 3.4. Military, Intelligence and Aerospace
  • 3.5. Automotive and Transportation
  • 3.6. The Energy Industry
  • 3.7. Photonic Computers: Design for Specific Locations
    • 3.7.1. Photonic Computers and HPC: The Quantum Supercomputer
    • 3.7.2. Data Center Scale Photonic Quantum Computers
    • 3.7.3. Rack-Mounted Photonic Computers
    • 3.7.4. Photonic Quantum Edge Computing
  • 3.8. Quantum + AI

Chapter Four: Ten-year Forecasts of Photonic Quantum Computers

  • 4.1. Methodology
  • 4.2. Shipment Forecast
    • 4.2.1. Initial Shipments
    • 4.2.2. Growth Over the Next Five Years
  • 4.3. Shipments by Product Type
  • 4.4. Alternative Scenarios
  • About the Analyst

List of Exhibits

  • Exhibit 4-1: Shipments of QCs vs. Photonic QCs
  • Exhibit 4-2: Worldwide Shipments of Photonic QCs by Type