封面
市场调查报告书
商品编码
1871109

用于雷射雷达的光子积体电路市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Photonic Integrated Circuits for LiDAR Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 190 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球雷射雷达用光子积体电路市场价值为 1.61 亿美元,预计到 2034 年将以 25.3% 的复合年增长率增长至 18.9 亿美元。

用于雷射雷达市场的光子积体电路 - IMG1

对自动驾驶需求的不断增长、光达组件的小型化、5G的部署以及成本的显着降低,正在推动雷射雷达技术的广泛应用。雷射和光学技术的创新也为该行业带来了显着的成长。硅光子学的进步正推动光达系统朝更快、更紧凑、更有效率的方向发展。将光子组件整合到硅晶片上,可实现高速资料传输和增强讯号处理,这对于车辆自动驾驶、智慧城市和下一代电信基础设施等应用至关重要。更高的频宽和成本效益正在为资料中心和智慧交通系统等领域开闢新的应用场景。这些发展正在改变全球光子系统的建构和应用方式。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 1.61亿美元
预测值 18.9亿美元
复合年增长率 25.3%

预计到2024年,硅光子平台市场规模将达到1.093亿美元。其成长主要得益于对紧凑型装置、高速光传输和可扩展製造流程日益增长的需求。整合光路和成本效益型生产的发展趋势也将持续影响该市场。建议企业专注于改进硅光子技术,以实现即时资料传输和可扩展解决方案,从而满足电信和汽车行业的需求。

2024年,调频连续波(FMCW)系统市场规模达6,250万美元。其成长源自于市场对高解析度、远距离检测的先进汽车感测系统的需求不断增长。这些系统节能高效,能够实现精确测量,因此对于自动驾驶和安全关键型应用等新兴领域至关重要。优先投资于设计紧凑、传输距离更远、精度更高的下一代FMCW系统,将有助于製造商获得竞争优势。

预计到2024年,美国用于雷射雷达的光子积体电路市场规模将达到5,830万美元。该地区市场强劲的成长得益于自动驾驶汽车的日益普及、智慧基础设施的进步、资料中心需求的不断增长以及领先半导体公司的支持。美国在光子和光达技术整合方面的创新持续领先。建议旨在扩大业务规模的製造商加快晶片级整合、资料中心连接和智慧出行应用方面的研究,以保持其在北美市场的领先地位。

推动雷射雷达光子积体电路市场发展的关键企业包括英特尔公司、Ayar Labs、Scintil Photonics、台积电、VLC Photonics(日立高新科技公司)、IBM、GlobalFoundries、AMS(欧司朗)、Infinera Corporation、义法半导体、Rockley Photonics、思科系统(欧司朗)、Infinera 公司、义法半导体、Rockley Photogenenics、思科系统(OYcacia)、YYAjia、SiYAicon、SOYY 最后​​) Technologies、LIGENTEC、LightIC Technologies、Effect Photonics、滨松光子学和Coherent Corporation。这些企业在雷射雷达光子积体电路市场采取的关键策略包括与汽车OEM厂商和电信业领导者建立策略联盟,以推动大规模应用。许多企业正大力投资研发,以加速开发紧凑型低成本硅光子平台和下一代基于FMCW的雷射雷达解决方案。在确保与半导体製造流程相容的同时扩大生产能力是重中之重。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 自动驾驶汽车的需求日益增长
      • 雷射技术的进步
      • 5G网路的引进
      • 光达系统的小型化
      • 降低光达製造成本
    • 陷阱与挑战
      • 光达系统的初始成本很高
      • 与现有基础设施整合的复杂性
    • 市场机会
      • 固态光达技术的进步
      • 与人工智慧 (AI) 和机器学习的集成
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 价格趋势
    • 按地区
    • 副产品
  • 定价策略
  • 新兴商业模式
  • 合规要求
  • 永续性措施
  • 消费者情绪分析
  • 专利和智慧财产权分析
  • 地缘政治与贸易动态

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • 中东和非洲
    • 市场集中度分析
  • 对主要参与者进行竞争基准分析
    • 财务绩效比较
      • 收入
      • 利润率
      • 研发
    • 产品组合比较
      • 产品范围广度
      • 科技
      • 创新
    • 地理位置比较
      • 全球足迹分析
      • 服务网路覆盖
      • 按地区分類的市场渗透率
    • 竞争定位矩阵
      • 领导人
      • 挑战者
      • 追踪者
      • 小众玩家
    • 战略展望矩阵
  • 2021-2024 年主要发展动态
    • 併购
    • 伙伴关係与合作
    • 技术进步
    • 扩张和投资策略
    • 永续发展倡议
    • 数位转型计划
  • 新兴/新创企业竞争对手格局

第五章:市场估计与预测:依技术平台划分,2021-2034年

  • 主要趋势
  • 硅光子学(Si/SOI)平台
  • 硅基氮化硅(sin-on-soi)平台
  • 磷化铟(INP)平台
  • 绝缘体上铌酸锂(LNOI)平台
  • 砷化镓(GaAs)平台

第六章:市场估算与预测:以光达侦测方法划分,2021-2034年

  • 主要趋势
  • 调频连续波(FMCW)系统
  • 飞行时间(TOF)系统
  • 整合路径差分吸收(IPDA)系统
  • 混合式飞行时间/调频微波系统

第七章:市场估算与预测:依波束控制技术划分,2021-2034年

  • 主要趋势
  • 光学相控阵(OPAS)
  • 焦平面阵列(FPAS)
  • MEMS整合转向
  • 电光光束控制
  • 固定光束/无转向应用

第八章:市场估算与预测:依波长划分,2021-2034年

  • 主要趋势
  • 905nm波段系统
  • 1310nm波段系统
  • 1550nm波段系统
  • 其他波长

第九章:市场估算与预测:以一体化程度划分,2021-2034年

  • 主要趋势
  • 晶片级集成
  • 多晶片模组集成
  • 混合装配集成

第十章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 进阶驾驶辅助系统与自动驾驶应用
  • 工业自动化与机器人应用
  • 监控与安全应用
  • 消费性电子产品整合应用
  • 环境监测应用

第十一章:市场估计与预测:依最终用途产业划分,2021-2034年

  • 主要趋势
  • 汽车产业
  • 航太与国防工业
  • 工业製造业
  • 消费性电子产业
  • 科学研究机构

第十二章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十三章:公司简介

  • 全球关键参与者
    • Coherent Corporation
    • Intel Corporation
    • GlobalFoundries
    • TSMC
    • STMicroelectronics
  • 区域关键参与者
    • 北美洲
      • SiLC Technologies
      • Rockley Photonics
      • Ayar Labs
      • Infinera Corporation
      • Cisco Systems (Acacia)
    • 欧洲
      • LightIC Technologies
      • LIGENTEC
      • X-FAB Silicon Foundries
      • AMS (Osram)
      • VLC Photonics (Hitachi High-Tech)
    • Asia-Pacific
      • Hamamatsu Photonics
      • Scintil Photonics
      • Tower Semiconductor
      • IBM
  • 颠覆者/小众玩家
    • Effect Photonics
简介目录
Product Code: 14970

The Global Photonic Integrated Circuits for LiDAR Market was valued at USD 161 million in 2024 and is estimated to grow at a CAGR of 25.3% to reach USD 1.89 Billion by 2034.

Photonic Integrated Circuits for LiDAR Market - IMG1

Rising demand for autonomous mobility, the miniaturization of LiDAR components, the rollout of 5G, and significant cost reductions are fueling widespread adoption. The industry is also experiencing notable traction due to innovations in laser and optical technologies. Progress in silicon photonics is driving a shift toward faster, compact, and more efficient LiDAR systems. Integration of photonic components onto silicon chips allows for high-speed data transmission and enhanced signal processing, critical features in applications such as vehicle autonomy, smart cities, and next-gen telecommunications infrastructure. Enhanced bandwidth and cost-effectiveness are unlocking new use cases across sectors like data centers and intelligent transportation systems. These developments are transforming how photonic systems are built and applied globally.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$161 Million
Forecast Value$1.89 Billion
CAGR25.3%

The silicon photonics platform segment generated USD 109.3 million in 2024. Its growth is driven by an increased need for compact form factors, high-speed optical transmission, and scalable manufacturing processes. Trends in integrated optical circuits and cost-efficient production continue to influence this segment. Companies are advised to focus on refining silicon photonics for real-time data transmission and scalable solutions to meet telecom and automotive sector demands.

In 2024, the frequency-modulated continuous wave (FMCW) systems segment generated USD 62.5 million. Its growth stems from rising demand for advanced automotive sensing systems offering high resolution and long-range detection. These systems are energy-efficient and enable precise measurements, making them vital for evolving applications in autonomous driving and safety-critical use cases. Prioritizing investment in next-gen FMCW systems that offer compact design, longer range, and enhanced accuracy will help manufacturers secure a competitive edge.

United States Photonic Integrated Circuits for LiDAR Market reached USD 58.3 million in 2024. The region's stronghold is fueled by growing adoption of autonomous vehicles, advances in smart infrastructure, rising data center requirements, and support from leading semiconductor companies. The country continues to lead in innovation surrounding photonic and LiDAR technology integration. Manufacturers aiming to scale operations are recommended to accelerate research in chip-level integration, data center connectivity, and smart mobility applications to sustain their lead in the North America market.

Notable players shaping Photonic Integrated Circuits for LiDAR Market include Intel Corporation, Ayar Labs, Scintil Photonics, TSMC, VLC Photonics (Hitachi High-Tech), IBM, GlobalFoundries, AMS (Osram), Infinera Corporation, STMicroelectronics, Rockley Photonics, Cisco Systems (Acacia), X-FAB Silicon Foundries, Tower Semiconductor, SiLC Technologies, LIGENTEC, LightIC Technologies, Effect Photonics, Hamamatsu Photonics, and Coherent Corporation. Key strategies adopted by companies in the Photonic Integrated Circuits for LiDAR Market include forming strategic alliances with automotive OEMs and telecom leaders to drive adoption at scale. Many are heavily investing in R&D to accelerate the development of compact and low-cost silicon photonics platforms and next-generation FMCW-based LiDAR solutions. Scaling production capabilities while ensuring compatibility with semiconductor fabrication processes is a priority.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Technology platform trend
    • 2.2.2 Lidar detection method trends
    • 2.2.3 Beam steering technology trends
    • 2.2.4 Wavelength trends
    • 2.2.5 Integration level trends
    • 2.2.6 Application trends
    • 2.2.7 End Use industry trends
    • 2.2.8 Regional trends
  • 2.3 TAM Analysis, 2025-2034 (USD Billion)
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing demand for autonomous vehicles
      • 3.2.1.2 Advancements in laser technology
      • 3.2.1.3 Introduction of 5g network
      • 3.2.1.4 Miniaturization of lidar systems
      • 3.2.1.5 Cost reduction in lidar manufacturing
    • 3.2.2 Pitfalls and challenges
      • 3.2.2.1 High initial cost of lidar systems
      • 3.2.2.2 Complexity in integration with existing infrastructure
    • 3.2.3 Market Opportunities
      • 3.2.3.1 Advancements in solid-state lidar technology
      • 3.2.3.2 Integration with artificial intelligence (AI) and machine learning
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Pricing Strategies
  • 3.10 Emerging business models
  • 3.11 Compliance requirements
  • 3.12 Sustainability measures
  • 3.13 Consumer sentiment analysis
  • 3.14 Patent and IP analysis
  • 3.15 Geopolitical and trade dynamics

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 Latin America
      • 4.2.1.5 Middle East & Africa
    • 4.2.2 Market concentration analysis
  • 4.3 Competitive benchmarking of key players
    • 4.3.1 Financial performance comparison
      • 4.3.1.1 Revenue
      • 4.3.1.2 Profit margin
      • 4.3.1.3 R&D
    • 4.3.2 Product portfolio comparison
      • 4.3.2.1 Product range breadth
      • 4.3.2.2 Technology
      • 4.3.2.3 Innovation
    • 4.3.3 Geographic presence comparison
      • 4.3.3.1 Global footprint analysis
      • 4.3.3.2 Service network coverage
      • 4.3.3.3 Market penetration by region
    • 4.3.4 Competitive positioning matrix
      • 4.3.4.1 Leaders
      • 4.3.4.2 Challengers
      • 4.3.4.3 Followers
      • 4.3.4.4 Niche players
    • 4.3.5 Strategic outlook matrix
  • 4.4 Key developments, 2021-2024
    • 4.4.1 Mergers and acquisitions
    • 4.4.2 Partnerships and collaborations
    • 4.4.3 Technological advancements
    • 4.4.4 Expansion and investment strategies
    • 4.4.5 Sustainability initiatives
    • 4.4.6 Digital transformation initiatives
  • 4.5 Emerging/ startup competitors landscape

Chapter 5 Market Estimates and Forecast, By Technology Platform, 2021 - 2034 (USD Million & Thousand Units)

  • 5.1 Key trends
  • 5.2 Silicon photonics (si/soi) platform
  • 5.3 Silicon nitride on silicon (sin-on-soi) platform
  • 5.4 Indium phosphide (inp) platform
  • 5.5 Lithium niobate on insulator (lnoi) platform
  • 5.6 Gallium arsenide (gaas) platform

Chapter 6 Market Estimates and Forecast, By Lidar Detection Method, 2021 - 2034 (USD Million & Thousand Units)

  • 6.1 Key trends
  • 6.2 Frequency-modulated continuous wave (fmcw) systems
  • 6.3 Time-of-flight (tof) systems
  • 6.4 Integrated path differential absorption (ipda) systems
  • 6.5 Hybrid tof/fmcw systems

Chapter 7 Market Estimates and Forecast, By Beam Steering Technology, 2021 - 2034 (USD Million & Thousand Units)

  • 7.1 Key trends
  • 7.2 Optical phased arrays (opas)
  • 7.3 Focal plane arrays (fpas)
  • 7.4 Mems-integrated steering
  • 7.5 Electro-optic beam steering
  • 7.6 Fixed beam/no steering applications

Chapter 8 Market Estimates and Forecast, By Wavelength, 2021 - 2034 (USD Million & Thousand Units)

  • 8.1 Key trends
  • 8.2 905nm band systems
  • 8.3 1310nm band systems
  • 8.4 1550nm band systems
  • 8.5 Other wavelengths

Chapter 9 Market Estimates and Forecast, By Integration Level, 2021 - 2034 (USD Million & Thousand Units)

  • 9.1 Key trends
  • 9.2 Chip-scale integration
  • 9.3 Multi-chip module integration
  • 9.4 Hybrid assembly integration

Chapter 10 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Million & Thousand Units)

  • 10.1 Key trends
  • 10.2 Adas & autonomous driving applications
  • 10.3 Industrial automation & robotics applications
  • 10.4 Surveillance & security applications
  • 10.5 Consumer electronics integration applications
  • 10.6 Environmental monitoring applications

Chapter 11 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 (USD Million & Thousand Units)

  • 11.1 Key trends
  • 11.2 Automotive industry
  • 11.3 Aerospace & defense industry
  • 11.4 Industrial manufacturing industry
  • 11.5 Consumer electronics industry
  • 11.6 Scientific & research institutions

Chapter 12 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million & Thousand Units)

  • 12.1 Key trends
  • 12.2 North America
    • 12.2.1 U.S.
    • 12.2.2 Canada
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 Uk
    • 12.3.3 France
    • 12.3.4 Spain
    • 12.3.5 Italy
    • 12.3.6 Netherlands
  • 12.4 Asia Pacific
    • 12.4.1 China
    • 12.4.2 India
    • 12.4.3 Japan
    • 12.4.4 Australia
    • 12.4.5 South Korea
  • 12.5 Latin America
    • 12.5.1 Brazil
    • 12.5.2 Mexico
    • 12.5.3 Argentina
  • 12.6 Middle East and Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 South Africa
    • 12.6.3 UAE

Chapter 13 Company Profiles

  • 13.1 Global Key Players
    • 13.1.1 Coherent Corporation
    • 13.1.2 Intel Corporation
    • 13.1.3 GlobalFoundries
    • 13.1.4 TSMC
    • 13.1.5 STMicroelectronics
  • 13.2 Regional Key Players
    • 13.2.1 North America
      • 13.2.1.1 SiLC Technologies
      • 13.2.1.2 Rockley Photonics
      • 13.2.1.3 Ayar Labs
      • 13.2.1.4 Infinera Corporation
      • 13.2.1.5 Cisco Systems (Acacia)
    • 13.2.2 Europe
      • 13.2.2.1 LightIC Technologies
      • 13.2.2.2 LIGENTEC
      • 13.2.2.3 X-FAB Silicon Foundries
      • 13.2.2.4 AMS (Osram)
      • 13.2.2.5 VLC Photonics (Hitachi High-Tech)
    • 13.2.3 Asia-Pacific
      • 13.2.3.1 Hamamatsu Photonics
      • 13.2.3.2 Scintil Photonics
      • 13.2.3.3 Tower Semiconductor
      • 13.2.3.4 IBM
  • 13.3 Disruptors / Niche Players
    • 13.3.1 Effect Photonics