封面
市场调查报告书
商品编码
1716439

2032年固体储氢材料市场预测:依产品类型、储存方法、形式、应用、最终用户和地区进行分析

Solid State Hydrogen Storage Materials Market Forecasts to 2032 - Global Analysis By Product Type, Storage Method, Form, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球固体储氢材料市场规模预计在 2025 年达到 14.3 亿美元,到 2032 年将达到 27.1 亿美元,预测期内的复合年增长率为 9.5%。

固体储氢材料是一种利用物理或化学吸收过程高效储存氢的先进解决方案。这些材料,例如金属氢化物和多孔骨架,透过将氢结合在其结构中,可以安全、紧凑地储存氢。与传统的气体或液体储存方法不同,固体系统具有更高的体积密度、更高的安全性并减少了运输过程中的能量损失。这对于应对气候变迁、能源安全等挑战、推动氢能作为清洁能源载体发挥重要作用。

全球向永续能源来源转变

随着各国政府和工业界寻求减少碳排放,氢能正成为重要的清洁能源载体。金属氢化物等固体材料能够实现安全且高效的存储,支持氢气在可再生能源系统中的应用。氢燃料电池在交通运输和固定电源应用中的日益普及正在推动对固体氢储存解决方案的需求。此外,对氢能基础设施(包括生产、储存和分配)的投资不断增加,进一步推动了市场的成长。

缺乏完善的氢气加註和配送基础设施

加氢站数量有限,阻碍了氢动力汽车和系统的广泛应用。此外,生产固体储存材料所涉及的复杂製造流程也推高了成本,影响了可负担性。氢吸收和解吸动力学缓慢以及某些材料的储存容量有限等挑战进一步阻碍了扩充性并阻碍了市场成长。

人们对氢燃料电池车的兴趣日益浓厚

汽车製造商越来越多地采用氢燃料电池来实现零排放移动,这推动了对高效储存解决方案的需求。奈米结构材料整合等技术进步将提高储存性能和扩充性。在国际合作和政府奖励的支持下,绿色氢气生产的推动将加速储存材料的创新并为新的应用铺平道路。

来自替代储存方法的竞争

传统方法已被广泛应用,并且通常被认为对于某些应用而言具有成本效益。地缘政治风险和贸易限制可能会扰乱製造固体储存系统所需的关键原材料的供应链。氢相关基础设施的网路安全漏洞引发了进一步的担忧。公众对储氢技术安全性和效率的怀疑可能会阻碍市场接受。

COVID-19的影响:

新冠疫情扰乱了全球供应链,影响了固体储氢材料的生产和分销。在疫情初期,製造业停顿和基础设施计划延迟减缓了市场成长。然而,这场危机凸显了清洁能源解决方案的重要性,并促使对氢技术的重新投资。自那时起,各国政府和组织均将永续能源系统作为其疫情后復苏计画的优先考虑的一部分。绿色氢能倡议的加速推进以及对能源安全的日益关注正在对市场产生积极影响。

预计预测期内金属氢化物部分将实现最大幅度增长。

由于金属氢化物具有较高的储存密度和安全性,预计在预测期内将占据最大的市场占有率。金属氢化物广泛用于固定和移动储氢应用,具有可靠性和紧凑性。材料科学的不断进步正在提高其吸收和释放氢气的能力。在相对较低的压力下储存氢气的能力进一步增加了它的吸引力并推动了其在市场上的主导地位。

预计预测期内加氢处理部门的复合年增长率最高。

预计加氢製程在预测期内将实现最高的成长率,因为它在提高储存效率方面发挥关键作用。加氢过程可以实现氢气的可逆吸收和释放,从而实现高效的能源储存。催化材料和奈米技术的进步改进了加氢过程,使其更有效率、更具可扩展性。随着对高性能储能係统的需求增加,加氢处理产业预计将迅速扩张。

占比最大的地区:

在预测期内,亚太地区预计将占据最大的市场占有率,这得益于对氢能基础设施和可再生能源计划的大量投资。在政府的大力支持和战略倡议的支持下,日本、中国和韩国等国家在氢气应用方面处于领先地位。该地区强大的製造业基础和材料科学技术专长将进一步推动市场成长。

复合年增长率最高的地区:

由于注重清洁能源转型和向氢经济迈进,预计北美地区在预测期内将呈现最高的复合年增长率。领先的研究机构和强有力的政府奖励正在刺激固体储氢材料的创新。运输业能源系统和可携式电源解决方案的应用不断扩大将进一步推动市场成长。美国和加拿大在发展氢能基础设施方面的合作正在加强该地区的市场。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 产品分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球固体储氢材料市场(依产品类型)

  • 金属氢化物
  • 复合氢化物
  • 化学氢化物
  • 碳基材料
  • 共用有机骨架(COF)
  • 金属有机骨架(MOF)
  • 金属间化合物
  • 其他产品类型

6. 全球固体储氢材料市场(以储氢方式)

  • 物理吸附
  • 化学吸附
  • 氢化

7. 全球固体储氢材料市场类型

  • 粉末
  • 颗粒
  • 颗粒
  • 复合材料
  • 其他形式

8. 全球固体储氢材料市场(依应用)

  • 燃料电池汽车(FCV)
  • 可携式电源系统
  • 固定式储能
  • 工业储氢
  • 其他用途

9. 全球固体储氢材料市场(依最终用户)

  • 航太
  • 活力
  • 电子和半导体
  • 医疗保健
  • 其他最终用户

第十章全球固体储氢材料市场(按区域)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Air Liquide Advanced Technologies
  • Ballard Power Systems
  • BMW Group
  • Daimler AG
  • General Motors Company
  • H2GO Power
  • Hexagon Composites ASA
  • Horizon Fuel Cell Technologies
  • HyGear
  • Hyundai Motor Company
  • ITM Power plc
  • Linde plc
  • McPhy Energy
  • Plug Power Inc.
  • Quantum Fuel Systems LLC
  • Toyota Motor Corporation
Product Code: SMRC29250

According to Stratistics MRC, the Global Solid State Hydrogen Storage Materials Market is accounted for $1.43 billion in 2025 and is expected to reach $2.71 billion by 2032 growing at a CAGR of 9.5% during the forecast period. Solid-state hydrogen storage materials are advanced solutions designed to store hydrogen efficiently by utilizing physical or chemical absorption processes. These materials, such as metal hydrides and porous frameworks, enable safe and compact storage by binding hydrogen within their structures. Unlike traditional gas or liquid storage methods, solid-state systems offer higher volumetric density, improved safety, and reduced energy loss during transportation. They are pivotal in advancing hydrogen as a clean energy carrier, addressing challenges like climate change and energy security.

Market Dynamics:

Driver:

Global shift towards sustainable energy sources

As governments and industries aim to reduce carbon emissions, hydrogen is emerging as a vital clean energy carrier. Solid-state materials, such as metal hydrides, enable safe and efficient storage, supporting the adoption of hydrogen in renewable energy systems. The rising adoption of hydrogen fuel cells in transportation and stationary power applications enhances the demand for solid-state hydrogen storage solutions. Moreover, increasing investments in hydrogen infrastructure, including production, storage, and distribution, further drive market growth.

Restraint:

Lack of comprehensive hydrogen refueling and distribution infrastructure

Limited availability of hydrogen fueling stations restricts the widespread adoption of hydrogen-powered vehicles and systems. Additionally, the complex manufacturing processes involved in producing solid-state storage materials lead to elevated costs, impacting affordability. Challenges such as slow hydrogen absorption/desorption rates and limited storage capacities in some materials further hinder scalability impeding the market growth.

Opportunity:

Growing interest in hydrogen fuel cell vehicles

Automotive manufacturers are increasingly adopting hydrogen fuel cells for zero-emission mobility, boosting demand for efficient storage solutions. Technological advancements, such as the integration of nanostructured materials, improve storage performance and scalability. The push for green hydrogen production, supported by international collaborations and government incentives, accelerates innovation in storage materials opens new avenues for adoption.

Threat:

Competition from alternative storage methods

Traditional methods are widely established and often perceived as more cost-effective for certain applications. Geopolitical risks and trade restrictions may disrupt the supply chain of critical raw materials needed for manufacturing solid-state storage systems. Cybersecurity vulnerabilities in hydrogen-related infrastructure create additional concerns. Public skepticism regarding the safety and efficiency of hydrogen storage technologies could hinder market acceptance.

Covid-19 Impact:

The COVID-19 pandemic disrupted global supply chains, affecting the production and distribution of solid-state hydrogen storage materials. Manufacturing shutdowns and delays in infrastructure projects slowed market growth during the initial phases of the pandemic. However, the crisis underscored the importance of clean energy solutions, prompting renewed investments in hydrogen technologies. Governments and organizations have since prioritized sustainable energy systems as part of post-pandemic recovery plans. The acceleration of green hydrogen initiatives and the increased focus on energy security have positively impacted the market.

The metal hydrides segment is expected to be the largest during the forecast period

The metal hydrides segment is expected to account for the largest market share during the forecast period due to its high storage density and safety features. Metal hydrides are widely used in stationary and mobile hydrogen storage applications, offering reliability and compactness. Continuous advancements in material science have improved their hydrogen absorption and release capabilities. Their ability to store hydrogen at relatively low pressures further enhances their appeal, driving their dominance in the market.

The hydrogenation segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the hydrogenation segment is predicted to witness the highest growth rate driven by its critical role in enhancing storage efficiency. Hydrogenation processes allow for reversible hydrogen absorption and release, enabling efficient energy storage. Advancements in catalytic materials and nanotechnology have improved the hydrogenation process, making it more efficient and scalable. As demand for high-performance storage systems rises, the hydrogenation segment is poised for rapid expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by significant investments in hydrogen infrastructure and renewable energy projects. Countries such as Japan, China, and South Korea are leading in hydrogen adoption, with robust government support and strategic initiatives. The region's strong manufacturing base and technological expertise in materials science further boost market growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR supported by increasing focus on clean energy transitions and hydrogen economy initiatives. The presence of leading research institutions and strong government incentives drive innovation in solid-state hydrogen storage materials. Expanding applications in transportation industrial energy systems, and portable power solutions further fuel market growth. Collaboration between the U.S. and Canada on hydrogen infrastructure development strengthens the regional market.

Key players in the market:

Some of the key players in Solid State Hydrogen Storage Materials Market include ir Liquide Advanced Technologies, Ballard Power Systems, BMW Group, Daimler AG, General Motors Company, H2GO Power, Hexagon Composites ASA, Horizon Fuel Cell Technologies, HyGear, Hyundai Motor Company, ITM Power plc, Linde plc, McPhy Energy, Plug Power Inc., Quantum Fuel Systems LLC and Toyota Motor Corporation.

Key Developments:

In December 2024, Horizon announced the development of the world's first 5MW Anion Exchange Membrane (AEM) electrolyzer, targeting large-scale green hydrogen projects. This innovation aims to reduce the cost of green hydrogen production.

In October 2023, Hyundai signed a memorandum of understanding with various partners to establish a hydrogen-based mobility ecosystem in Saudi Arabia. The collaboration focuses on promoting hydrogen fuel cell commercial vehicles and exploring joint research opportunities in hydrogen mobility.

In May 2024, Quantum launched a new generation of hydrogen storage systems for heavy-duty trucks at the Advanced Clean Transportation Expo. These Type 4 composite material tanks store hydrogen at 700 bar and offer flexible mounting options, accommodating between 54 and 80 kg of hydrogen fuel.

Product Types Covered:

  • Metal Hydrides
  • Complex Hydrides
  • Chemical Hydrides
  • Carbon-based Materials
  • Covalent Organic Frameworks (COFs)
  • Metal-Organic Frameworks (MOFs)
  • Intermetallic Compounds
  • Other Products Types

Storage Methods Covered:

  • Physisorption
  • Chemisorption
  • Hydrogenation

Forms Covered:

  • Powder
  • Granules
  • Pellets
  • Composites
  • Other Forms

Applications Covered:

  • Fuel Cell Vehicles (FCVs)
  • Portable Power Systems
  • Stationary Power Storage
  • Industrial Hydrogen Storage
  • Other Applications

End Users Covered:

  • Automotive
  • Aerospace
  • Energy
  • Electronics & Semiconductors
  • Medical
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Solid State Hydrogen Storage Materials Market, By Product Type

  • 5.1 Introduction
  • 5.2 Metal Hydrides
  • 5.3 Complex Hydrides
  • 5.4 Chemical Hydrides
  • 5.5 Carbon-based Materials
  • 5.6 Covalent Organic Frameworks (COFs)
  • 5.7 Metal-Organic Frameworks (MOFs)
  • 5.8 Intermetallic Compounds
  • 5.9 Other Products Types

6 Global Solid State Hydrogen Storage Materials Market, By Storage Method

  • 6.1 Introduction
  • 6.2 Physisorption
  • 6.3 Chemisorption
  • 6.4 Hydrogenation

7 Global Solid State Hydrogen Storage Materials Market, By Form

  • 7.1 Introduction
  • 7.2 Powder
  • 7.3 Granules
  • 7.4 Pellets
  • 7.5 Composites
  • 7.6 Other Forms

8 Global Solid State Hydrogen Storage Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Fuel Cell Vehicles (FCVs)
  • 8.3 Portable Power Systems
  • 8.4 Stationary Power Storage
  • 8.5 Industrial Hydrogen Storage
  • 8.6 Other Applications

9 Global Solid State Hydrogen Storage Materials Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive
  • 9.3 Aerospace
  • 9.4 Energy
  • 9.5 Electronics & Semiconductors
  • 9.6 Medical
  • 9.7 Other End Users

10 Global Solid State Hydrogen Storage Materials Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Air Liquide Advanced Technologies
  • 12.2 Ballard Power Systems
  • 12.3 BMW Group
  • 12.4 Daimler AG
  • 12.5 General Motors Company
  • 12.6 H2GO Power
  • 12.7 Hexagon Composites ASA
  • 12.8 Horizon Fuel Cell Technologies
  • 12.9 HyGear
  • 12.10 Hyundai Motor Company
  • 12.11 ITM Power plc
  • 12.12 Linde plc
  • 12.13 McPhy Energy
  • 12.14 Plug Power Inc.
  • 12.15 Quantum Fuel Systems LLC
  • 12.16 Toyota Motor Corporation

List of Tables

  • 1 Global Solid State Hydrogen Storage Materials Market Outlook, By Region (2024-2032) ($MN)
  • 2 Global Solid State Hydrogen Storage Materials Market Outlook, By Product Type (2024-2032) ($MN)
  • 3 Global Solid State Hydrogen Storage Materials Market Outlook, By Metal Hydrides (2024-2032) ($MN)
  • 4 Global Solid State Hydrogen Storage Materials Market Outlook, By Complex Hydrides (2024-2032) ($MN)
  • 5 Global Solid State Hydrogen Storage Materials Market Outlook, By Chemical Hydrides (2024-2032) ($MN)
  • 6 Global Solid State Hydrogen Storage Materials Market Outlook, By Carbon-based Materials (2024-2032) ($MN)
  • 7 Global Solid State Hydrogen Storage Materials Market Outlook, By Covalent Organic Frameworks (COFs) (2024-2032) ($MN)
  • 8 Global Solid State Hydrogen Storage Materials Market Outlook, By Metal-Organic Frameworks (MOFs) (2024-2032) ($MN)
  • 9 Global Solid State Hydrogen Storage Materials Market Outlook, By Intermetallic Compounds (2024-2032) ($MN)
  • 10 Global Solid State Hydrogen Storage Materials Market Outlook, By Other Products Types (2024-2032) ($MN)
  • 11 Global Solid State Hydrogen Storage Materials Market Outlook, By Storage Method (2024-2032) ($MN)
  • 12 Global Solid State Hydrogen Storage Materials Market Outlook, By Physisorption (2024-2032) ($MN)
  • 13 Global Solid State Hydrogen Storage Materials Market Outlook, By Chemisorption (2024-2032) ($MN)
  • 14 Global Solid State Hydrogen Storage Materials Market Outlook, By Hydrogenation (2024-2032) ($MN)
  • 15 Global Solid State Hydrogen Storage Materials Market Outlook, By Form (2024-2032) ($MN)
  • 16 Global Solid State Hydrogen Storage Materials Market Outlook, By Powder (2024-2032) ($MN)
  • 17 Global Solid State Hydrogen Storage Materials Market Outlook, By Granules (2024-2032) ($MN)
  • 18 Global Solid State Hydrogen Storage Materials Market Outlook, By Pellets (2024-2032) ($MN)
  • 19 Global Solid State Hydrogen Storage Materials Market Outlook, By Composites (2024-2032) ($MN)
  • 20 Global Solid State Hydrogen Storage Materials Market Outlook, By Other Forms (2024-2032) ($MN)
  • 21 Global Solid State Hydrogen Storage Materials Market Outlook, By Application (2024-2032) ($MN)
  • 22 Global Solid State Hydrogen Storage Materials Market Outlook, By Fuel Cell Vehicles (FCVs) (2024-2032) ($MN)
  • 23 Global Solid State Hydrogen Storage Materials Market Outlook, By Portable Power Systems (2024-2032) ($MN)
  • 24 Global Solid State Hydrogen Storage Materials Market Outlook, By Stationary Power Storage (2024-2032) ($MN)
  • 25 Global Solid State Hydrogen Storage Materials Market Outlook, By Industrial Hydrogen Storage (2024-2032) ($MN)
  • 26 Global Solid State Hydrogen Storage Materials Market Outlook, By Other Applications (2024-2032) ($MN)
  • 27 Global Solid State Hydrogen Storage Materials Market Outlook, By End User (2024-2032) ($MN)
  • 28 Global Solid State Hydrogen Storage Materials Market Outlook, By Automotive (2024-2032) ($MN)
  • 29 Global Solid State Hydrogen Storage Materials Market Outlook, By Aerospace (2024-2032) ($MN)
  • 30 Global Solid State Hydrogen Storage Materials Market Outlook, By Energy (2024-2032) ($MN)
  • 31 Global Solid State Hydrogen Storage Materials Market Outlook, By Electronics & Semiconductors (2024-2032) ($MN)
  • 32 Global Solid State Hydrogen Storage Materials Market Outlook, By Medical (2024-2032) ($MN)
  • 33 Global Solid State Hydrogen Storage Materials Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.