封面
市场调查报告书
商品编码
1725134

2032 年农业扩增实境市场预测:按组件、部署模式、技术、应用、最终用户和地区进行的全球分析

Augmented Reality in Agriculture Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Deployment Mode, Technology, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球农业扩增实境市场预计在 2025 年将达到 30.9 亿美元,到 2032 年将达到 226 亿美元,预测期内的复合年增长率为 32.9%。

农业中的扩增实境(AR) 是指将数位资讯整合到现实世界的农业环境中,以提高决策、生产力和效率。作物健康状况、土壤条件、天气预报和设备状态等数据可以透过 AR 眼镜或行动装置迭加到农民的视野中,实现即时洞察和精密农业。 AR 有助于培训、监测和指导农业实践,减少资源浪费并提高产量。这项技术透过提供支援永续实践、简化工作流程并直接在田间为农民提供可操作资讯的互动直观工具,正在改变传统农业。

精密农业的需求

精密农业日益增长的需求正在推动扩增实境(AR) 在农业领域的应用。随着农民寻求数据主导的解决方案来优化作物产量,AR 增强了土壤健康、天气模式和作物状况的即时视觉化。这种整合可以实现更准确的决策、更有效率的资源管理并降低营运成本。 AR 与精密农业之间的协同效应将为农民提供身临其境型洞察,最终提高现代农业的生产力、永续性和技术进步。

初始成本高

农业领域扩增实境(AR) 技术的高初始成本限制了其应用,尤其是在中小型农场中,阻碍了市场成长。这些成本包括昂贵的硬体、软体开发和集成,可能会造成重大的经济障碍。因此,许多潜在用户可能会推迟或放弃采用 AR 解决方案,从而减缓整体采用速度并限制改善作物管理和精密农业的潜在益处。

智慧农业技术的应用日益广泛

智慧农业技术的应用正在兴起,透过提高准确性、效率和决策能力,积极推动农业市场的扩增实境(AR) 发展。扩增实境工具与物联网和数据分析相结合,可即时视觉化田间状况、作物健康状况和设备诊断。这种协同效应提高了生产力并减少了资源浪费。随着农民越来越接受数位解决方案,对 AR 应用的需求将会成长,从而彻底改变传统的耕作方法,并为整个农业价值链的创新创造新的机会。

资料隐私和安全问题

对资料隐私和安全的担忧是农业市场扩增实境(AR) 应用的主要障碍。收集和共用敏感的农场数据(例如土壤条件和作物健康状况)会引发隐私问题。与 AR 平台相关的网路安全风险可能导致资料外洩和未授权存取。这些担忧阻碍了农民和相关人员全面采用 AR 技术,限制了农业领域的市场成长和创新。

COVID-19的影响

COVID-19 疫情加速了扩增实境(AR) 在农业领域的应用。农民正在寻找创新的方法,以有限的物理互动来保持事物的正常运作。 AR 促进了远端培训、虚拟咨询和设备维护,确保了业务连续性。此外,对非接触式解决方案的不断增长的需求推动了对 AR 技术的投资。因此,AR已成为疫情期间提高效率、优化资源利用和支持永续农业的关键工具。

预计作物监测部门将成为预测期内最大的部门

预计作物监测领域将在预测期内占据最大的市场份额,因为支持 AR 的作物监测工具使农民能够直观地了解作物的健康状况、及早发现疾病并优化市场占有率和施肥方法。其结果是产量更高、资源浪费更少、永续性更强。 AR与无人机和感测器的结合将进一步支援高效的现场分析和主动管理。随着对智慧农业的需求不断增长,作物监测继续成为农业应用 AR 的主要动力。

预计农学家部门在预测期内将以最高的复合年增长率成长。

农学家领域预计将在预测期内呈现最高的成长率,因为农学家可以提供作物健康、土壤条件和害虫管理的即时数据主导的见解,从而增强农民的决策能力。他们的专业知识与 AR 视觉化功能相结合,将改善精密农业技术并提高生产力。此次整合将加速农业领域对 AR 技术的应用,提高效率和永续性,并为农业市场 AR 的成长和创新做出重大贡献。

占比最大的地区:

在预测期内,由于农业技术的进步,预计亚太地区将占据最大的市场占有率。 AR 可实现即时数据视觉化,从而改善作物管理和精密农业技术。农民可以使用 AR 来加强培训、作物监测和设备维护,从而提高生产力并减少资源浪费。此外,AR 还可以辅助害虫检测、灌溉优化和供应链管理,帮助满足该地区对永续农业日益增长的需求,同时提高盈利和营运效率。

复合年增长率最高的地区:

预计北美地区在预测期内的复合年增长率最高。 AR 技术让农民能够看到迭加在现实世界中的数据,这有助于土壤管理、作物监测和害虫控制。即时资讯可增强决策能力、最大限度地提高资源利用率并增加产量。智慧型手机应用程式和智慧眼镜等基于 AR 的资源可以提高工作效率和培训。这项技术发展将促进永续实践、降低成本并促进北美农业经济。

提供免费客製化:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球农业扩增实境市场(按组件)

  • 硬体
  • 软体
  • 服务

6. 全球农业扩增实境市场(依部署模式)

  • 本地
  • 云端基础

7. 全球农业扩增实境技术

  • 基于标记的扩增实境
  • 无标记扩增实境
  • 基于投影的扩增实境
  • 基于迭加的扩增实境

8. 全球农业扩增实境市场(按应用)

  • 精密农业
  • 牲畜监控
  • 智慧温室
  • 灌溉管理
  • 作物监测
  • 农场管理
  • 其他用途

9. 全球农业扩增实境市场(按最终用户)

  • 农民
  • 农学家
  • 农业设备製造商
  • 研究机构
  • 其他最终用户

第十章全球农业扩增实境(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司概况

  • Trimble Inc.
  • Raven Industries
  • AG Leader Technology
  • Deere & Company
  • CLAAS Group
  • Topcon Positioning Systems
  • Augmenta
  • Kubota Corporation
  • BASF Digital Farming GmbH
  • CropX
  • AgEagle Aerial Systems
  • Taranis
  • Ecorobotix
  • Gamaya
  • Sentera
  • Augmentir
  • Microsoft
  • Syngenta
  • Prospera Technologies
  • VineView
Product Code: SMRC29280

According to Stratistics MRC, the Global Augmented Reality in Agriculture Market is accounted for $3.09 billion in 2025 and is expected to reach $22.6 billion by 2032 growing at a CAGR of 32.9% during the forecast period. Augmented Reality (AR) in agriculture refers to the integration of digital information with the real-world farming environment to enhance decision-making, productivity, and efficiency. By overlaying data such as crop health, soil conditions, weather forecasts, and equipment status onto a farmer's view through AR glasses or mobile devices, it enables real-time insights and precision farming. AR helps in training, monitoring, and guiding agricultural operations, reducing resource wastage and improving yields. This technology transforms traditional farming by providing interactive and intuitive tools that support sustainable practices, streamline workflows, and empower farmers with actionable information directly in the field.

Market Dynamics:

Driver:

Precision Farming Demand

The growing demand for precision farming is absolutely driving the adoption of augmented reality (AR) in the agriculture market. As farmers seek data-driven solutions for optimizing crop yields, AR enhances real-time visualization of soil health, weather patterns, and crop conditions. This integration enables more accurate decision-making, efficient resource management, and reduced operational costs. The synergy between AR and precision farming empowers farmers with immersive insights, ultimately boosting productivity, sustainability, and technological advancement in modern agricultural practices.

Restraint:

High Initial Costs

High initial costs associated with augmented reality (AR) technology in agriculture hinder market growth by limiting adoption, especially among small and medium-sized farms. These costs include expensive hardware, software development, and integration, which can be a significant financial barrier. As a result, many potential users may delay or forgo implementing AR solutions, slowing the overall adoption and limiting the potential benefits of improved crop management and precision farming.

Opportunity:

Rising Adoption of Smart Farming Technologies

The rising adoption of smart farming technologies is positively driving the augmented reality (AR) in agriculture market by enhancing precision, efficiency, and decision-making. AR tools, integrated with IoT and data analytics, enable real-time visualization of field conditions, crop health, and equipment diagnostics. This synergy boosts productivity and reduces resource wastage. As farmers increasingly embrace digital solutions, the demand for AR applications grows, revolutionizing traditional farming practices and creating new opportunities for innovation across the agricultural value chain.

Threat:

Data Privacy and Security Concerns

Data privacy and security concerns present a significant hindrance to the Augmented Reality (AR) in agriculture market. The collection and sharing of sensitive farm data, such as soil conditions and crop health, raise privacy issues. Cybersecurity risks related to AR platforms can lead to data breaches or unauthorized access. These concerns deter farmers and stakeholders from fully adopting AR technologies, limiting market growth and innovation in the agricultural sector.

Covid-19 Impact

The COVID-19 pandemic accelerated the adoption of Augmented Reality (AR) in agriculture, as farmers sought innovative ways to maintain operations with limited physical interactions. AR facilitated remote training, virtual consultations, and equipment maintenance, ensuring business continuity. Additionally, the increased demand for contactless solutions boosted investments in AR technologies. As a result, AR became a key tool for improving efficiency, optimizing resource use, and supporting sustainable farming practices during the pandemic.

The crop monitoring segment is expected to be the largest during the forecast period

The crop monitoring segment is expected to account for the largest market share during the forecast period, as AR-powered crop monitoring tools enable farmers to visualize crop health, detect diseases early, and optimize irrigation and fertilization practices. This results in higher yields, reduced resource wastage, and improved sustainability. The integration of AR with drones and sensors further supports efficient field analysis and proactive management. As demand for smart farming grows, crop monitoring continues to be a key contributor to AR adoption in agriculture.

The agronomists segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the agronomists segment is predicted to witness the highest growth rate, because agronomists can deliver real-time, data-driven insights on crop health, soil conditions, and pest management, enhancing decision-making for farmers. Their expertise, combined with AR's visualization capabilities, improves precision farming techniques and boosts productivity. This integration accelerates the adoption of AR technologies across the agricultural sector, promoting efficiency and sustainability, and significantly contributing to the growth and innovation within the AR in agriculture market.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share owing to advancements in farming practices. AR enables real-time data visualization, improving crop management and precision farming techniques. Farmers can use AR for enhanced training, crop monitoring, and equipment maintenance, resulting in increased productivity and reduced resource waste. Additionally, AR aids in pest detection, irrigation optimization, and supply chain management, helping to address the region's growing demand for sustainable agriculture while boosting profitability and operational efficiency.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, because farmers can see data superimposed on real-world settings due to AR technology, which helps with soil management, crop monitoring, and pest control. With real-time information, it enhances decision-making, maximizes resource utilization, and boosts yields. AR-based resources, like smartphone apps and smart glasses, improve operational effectiveness and training. This technology development promotes sustainable practices, lowering costs and boosting North America's agricultural economy.

Key players in the market

Some of the key players profiled in the Augmented Reality in Agriculture Market include Trimble Inc., Raven Industries, AG Leader Technology, Deere & Company, CLAAS Group, Topcon Positioning Systems, Augmenta, Kubota Corporation, BASF Digital Farming GmbH, CropX, AgEagle Aerial Systems, Taranis, Ecorobotix, Gamaya, Sentera, Augmentir, Microsoft, Syngenta, Prospera Technologies and VineView.

Key Developments:

In February 2025, Microsoft and Anduril Industries announced an expanded partnership to advance the U.S. Army's Integrated Visual Augmentation System (IVAS) program. Additionally, Microsoft Azure will serve as Anduril's preferred cloud platform for all IVAS and Anduril AI technologies.

In January 2025, In January 2025, Microsoft and OpenAI announced an evolution of their strategic partnership, focusing on the next phase of AI development. Key elements of their 2019 agreement remain intact through 2030, including Microsoft's rights to OpenAI's intellectual property for integration into products like Copilot, exclusivity of the OpenAI API on Azure, and mutual revenue-sharing arrangements.

In June 2024, Hitachi and Microsoft announced a significant three-year strategic partnership aimed at accelerating business and social innovation through generative AI. This collaboration is projected to be worth several billion dollars and focuses on leveraging AI technologies to drive transformation across various industries.

Components Covered:

  • Hardware
  • Software
  • Services

Deployment Modes Covered:

  • On-Premises
  • Cloud-Based

Technologies Covered:

  • Marker-based AR
  • Markerless AR
  • Projection-based AR
  • Superimposition-based AR

Applications Covered:

  • Precision Farming
  • Livestock Monitoring
  • Smart Greenhouses
  • Irrigation Management
  • Crop Monitoring
  • Farm Management
  • Other Applications

End Users Covered:

  • Farmers
  • Agronomists
  • Agriculture Equipment Manufacturers
  • Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Augmented Reality in Agriculture Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Augmented Reality in Agriculture Market, By Deployment Mode

  • 6.1 Introduction
  • 6.2 On-Premises
  • 6.3 Cloud-Based

7 Global Augmented Reality in Agriculture Market, By Technology

  • 7.1 Introduction
  • 7.2 Marker-based AR
  • 7.3 Markerless AR
  • 7.4 Projection-based AR
  • 7.5 Superimposition-based AR

8 Global Augmented Reality in Agriculture Market, By Application

  • 8.1 Introduction
  • 8.2 Precision Farming
  • 8.3 Livestock Monitoring
  • 8.4 Smart Greenhouses
  • 8.5 Irrigation Management
  • 8.6 Crop Monitoring
  • 8.7 Farm Management
  • 8.8 Other Applications

9 Global Augmented Reality in Agriculture Market, By End User

  • 9.1 Introduction
  • 9.2 Farmers
  • 9.3 Agronomists
  • 9.4 Agriculture Equipment Manufacturers
  • 9.5 Research Institutions
  • 9.6 Other End Users

10 Global Augmented Reality in Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Trimble Inc.
  • 12.2 Raven Industries
  • 12.3 AG Leader Technology
  • 12.4 Deere & Company
  • 12.5 CLAAS Group
  • 12.6 Topcon Positioning Systems
  • 12.7 Augmenta
  • 12.8 Kubota Corporation
  • 12.9 BASF Digital Farming GmbH
  • 12.10 CropX
  • 12.11 AgEagle Aerial Systems
  • 12.12 Taranis
  • 12.13 Ecorobotix
  • 12.14 Gamaya
  • 12.15 Sentera
  • 12.16 Augmentir
  • 12.17 Microsoft
  • 12.18 Syngenta
  • 12.19 Prospera Technologies
  • 12.20 VineView

List of Tables

  • Table 1 Global Augmented Reality in Agriculture Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Augmented Reality in Agriculture Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Augmented Reality in Agriculture Market Outlook, By Hardware (2024-2032) ($MN)
  • Table 4 Global Augmented Reality in Agriculture Market Outlook, By Software (2024-2032) ($MN)
  • Table 5 Global Augmented Reality in Agriculture Market Outlook, By Services (2024-2032) ($MN)
  • Table 6 Global Augmented Reality in Agriculture Market Outlook, By Deployment Mode (2024-2032) ($MN)
  • Table 7 Global Augmented Reality in Agriculture Market Outlook, By On-Premises (2024-2032) ($MN)
  • Table 8 Global Augmented Reality in Agriculture Market Outlook, By Cloud-Based (2024-2032) ($MN)
  • Table 9 Global Augmented Reality in Agriculture Market Outlook, By Technology (2024-2032) ($MN)
  • Table 10 Global Augmented Reality in Agriculture Market Outlook, By Marker-based AR (2024-2032) ($MN)
  • Table 11 Global Augmented Reality in Agriculture Market Outlook, By Markerless AR (2024-2032) ($MN)
  • Table 12 Global Augmented Reality in Agriculture Market Outlook, By Projection-based AR (2024-2032) ($MN)
  • Table 13 Global Augmented Reality in Agriculture Market Outlook, By Superimposition-based AR (2024-2032) ($MN)
  • Table 14 Global Augmented Reality in Agriculture Market Outlook, By Application (2024-2032) ($MN)
  • Table 15 Global Augmented Reality in Agriculture Market Outlook, By Precision Farming (2024-2032) ($MN)
  • Table 16 Global Augmented Reality in Agriculture Market Outlook, By Livestock Monitoring (2024-2032) ($MN)
  • Table 17 Global Augmented Reality in Agriculture Market Outlook, By Smart Greenhouses (2024-2032) ($MN)
  • Table 18 Global Augmented Reality in Agriculture Market Outlook, By Irrigation Management (2024-2032) ($MN)
  • Table 19 Global Augmented Reality in Agriculture Market Outlook, By Crop Monitoring (2024-2032) ($MN)
  • Table 20 Global Augmented Reality in Agriculture Market Outlook, By Farm Management (2024-2032) ($MN)
  • Table 21 Global Augmented Reality in Agriculture Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 22 Global Augmented Reality in Agriculture Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global Augmented Reality in Agriculture Market Outlook, By Farmers (2024-2032) ($MN)
  • Table 24 Global Augmented Reality in Agriculture Market Outlook, By Agronomists (2024-2032) ($MN)
  • Table 25 Global Augmented Reality in Agriculture Market Outlook, By Agriculture Equipment Manufacturers (2024-2032) ($MN)
  • Table 26 Global Augmented Reality in Agriculture Market Outlook, By Research Institutions (2024-2032) ($MN)
  • Table 27 Global Augmented Reality in Agriculture Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.