封面
市场调查报告书
商品编码
1891803

全球车网互动(V2G)市场:按车辆类型、解决方案、应用、最终用户和地区划分 - 市场规模、行业趋势、机会分析和预测(2026-2035 年)

Global Vehicle to Grid Market: By Vehicle Type, Solution, Application, End Users, Region - Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2026-2035

出版日期: | 出版商: Astute Analytica | 英文 308 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

车网互动(V2G)市场正在快速成长,预计到 2025 年将达到 62.7 亿美元。此外,预计 2025 年至 2035 年的复合年增长率将达到 26.50%,到 2035 年将达到 658.4 亿美元。这一增长主要得益于电动车 (EV) 的日益普及、可再生能源的併网以及确保电网稳定性的需求,其中纯电动汽车 (BEV)、双向充电和硬体预计将显着增长。

推动这一市场快速成长的关键因素有很多,其中最主要的是电动车 (EV) 的日益普及。这扩大了可与电网互动的分散式储能资源的范围。 随着越来越多的消费者和企业转向纯电动车 (BEV),这些车辆兼具交通工具和移动储能单元的双重功能,其潜力正变得越来越有吸引力。

市场趋势

车网互动 (V2G) 市场的竞争格局由众多专业软体聚合商和硬体製造商共同塑造,它们各自在推动技术进步和提高应用普及率方面发挥着关键作用。一个显着的例子是,荷兰银行 (ABN AMRO Bank) 于 2025 年 12 月宣布加入一项创新 V2G 项目,该项目涵盖乌得勒支和埃因霍温两座城市。这项雄心勃勃的计画由 My Wheels、其母公司 The Sharing Group、雷诺集团和 WeDrive Solar 合作实现,最终打造了全球最大的利用 V2G 技术的汽车共享服务。

同月,澳洲政府启动了车辆电网网路(VGN)项目,这是一项国家级计划,允许电动车和插电式混合动力汽车的车主将多余的电力输回电网。这项措施体现了政策制定者对V2G技术角色的日益重视,该技术有助于提高电网灵活性,支持再生能源併网,并为车主带来经济效益。

现代汽车集团在2025年11月也取得了显着进展,加快了先进V2X(车联网)服务的全球部署。这些创新解决方案使电动车不仅能够储存和供应能源,还能与家庭和电网共享能源,从而有效地重新定义了电动车在全球能源生态系统中的角色。现代的V2X技术强调了电动车的多功能性,使其成为能源管理和分配的积极参与者。

2025年11月的另一个重大进展是在加州麦金利维尔的红木海岸机场微电网联合展示了V2G技术。该计画由太平洋天然气电力公司(PG&E)、日产汽车、Fermata Energy和Schatz能源研究中心共同参与,展示了两辆日产聆风电动汽车与四个双向充电站的整合。此演示突显了V2G技术在微电网环境中的实用性,展示了电动车如何作为分散式能源,增强电网的稳定性和韧性。

关键成长因素

电动车(EV)产量和销售量的快速成长对V2G(车辆到电网)市场的成长产生了显着的正面影响。 过去十年,全球电动车销量经历了令人瞩目的年增长。 Livemint 的数据显示,2013 年至 2023 年间,电动车年平均成长率约为 30%。这一快速成长得益于 13 个国家电动车新车销量占比超过 10% 的里程碑式成就,也标誌着消费者偏好和汽车产业向电气化转型的重要转变。国际能源总署 (IEA) 的报告进一步印证了这一趋势:2023 年电动车销量将比 2022 年激增 350 万辆,一年内增幅高达 35%。预计 2023 年全球将新增约 1,400 万辆电动车,其中纯电动车 (BEV) 将占当年电动车总量的 70%。纯电动车的这种主导地位反映了电池技术、续航里程和充电基础设施的改进日益普及,这些因素共同提升了纯电动车的吸引力。

新机遇

车网互动(V2G)市场需求的激增主要源自于对老旧电网进行现代化改造和降低营运成本的迫切需求。随着再生能源在全球范围内以前所未有的规模扩张,电力系统营运商在管理太阳能和风能等能源固有的间歇性方面面临重大挑战。虽然这些再生能源清洁且可持续,但它们的输出会随着天气状况和时间而波动,这引发了人们对电网稳定性和可靠性的担忧。为了应对这些波动,电力系统营运商需要大量的灵活储能系统,以便在再生能源供应充足时吸收多余的电力,并在需求超过供应时进行补充。

优化障碍

互通性仍是车网互动(V2G)技术发展的主要障碍。其中一个主要挑战是缺乏广泛接受的通讯协议,无法实现电动车(EV)、充电站和电网之间的顺畅互通。由于缺乏标准化框架,不同的製造商和服务提供者往往会开发不相容的专有系统,从而阻碍了无缝整合。缺乏互通性会导致效率低下、成本增加和可扩展性受限,最终减缓V2G系统的普及速度,并阻碍其潜在效益的充分发挥。

目录

第一章:摘要整理:全球车网互动(V2G)市场

第二章:研究方法与架构

  • 研究目标
  • 产品概述
  • 市场区隔
  • 质性研究
    • 一手和二手资料来源
  • 量化研究
    • 一手和二手资料来源
  • 按地区划分的主要调查受访者组成
  • 研究假设
  • 市场规模估算
  • 数据三角测量法

第三章:全球车网互动(V2G)市场概况

  • 产业价值链分析
    • 原料和电池製造
    • 电动车製造商(OEM)
    • 充电硬体供应商(双向充电器)
    • 软体供应商和聚合商(V2G 管理平台)
    • 电动车製造商(OEM)
    • 终端用户(住宅、商业、车队、市政)
  • 行业展望
    • 2019-2024 年全球汽车销量
    • 2019-2024 年全球汽车产量
    • V2G 单元分析
    • 主要公司比较矩阵
    • 充电基础设施分析
  • PESTLE 分析
  • 波特五力分析
    • 供应商议价能力
    • 买方议价能力
    • 替代品威胁
    • 新进入者威胁
    • 竞争强度
  • 市场成长与展望
    • 市场收入估计与预测(2020-2035)
  • 市场吸引力分析
    • 按应用领域划分
    • 按地区划分
    • 可操作性洞察(分析师建议)

第四章 全球车网互动(V2G)市场分析

  • 市场动态与趋势
    • 成长驱动因素
    • 限制因素
    • 机遇
    • 关键趋势
  • 竞争格局概览
    • 市场集中度
    • 公司市占率分析(价值,2024 年)
    • 竞争格局分析与基准分析
  • 市场规模及预测,2020-2035 年
    • 依车辆类型划分
    • 按解决方案划分
    • 依应用程式划分
    • 依最终用户划分
    • 按地区划分

第五章:北美车网互联 (V2G) 市场分析

第六章:欧洲车网互联 (V2G) 市场分析

第七章:亚太地区车网互联 (V2G) 市场分析

第八章:中东与非洲车网互动(V2G)市场分析

第九章:南美洲车网互动(V2G)市场分析

第十章:公司简介

  • 日产汽车公司
  • 三菱汽车公司
  • NUVVE公司
  • Fermata Energy公司
  • ENGIE集团
  • OVO Energy有限公司
  • 雷诺集团
  • 本田汽车有限公司
  • 现代汽车公司
  • AC Propulsion公司
  • Edison International公司
  • 电装株式会社 (DENSO Co.)
  • 日立 (Hitachi)
  • Next Energy
  • NRG Energy
  • OVO Energy Ltd.
  • ChargeScape
  • 其他主要参与者

第十一章:附录

简介目录
Product Code: AA0924912

The Vehicle-to-Grid (V2G) market is booming, valued at US$ 6.27 billion in 2025 and is projected to hit the market valuation of US$ 65.84 billion by 2035 at a CAGR of 26.50% during the forecast period 2025-2035. This is driven by rising EV adoption, renewable energy integration, and grid needs for stability, with key growth in BEVs, bidirectional charging, and hardware.

Several key factors are driving this booming market. Foremost among them is the rising adoption of electric vehicles (EVs), which has created a larger pool of distributed energy storage resources capable of interacting with the electrical grid. As more consumers and businesses transition to battery electric vehicles (BEVs), the potential for these vehicles to serve dual functions-as transportation and as mobile energy storage units-has become increasingly attractive.

Noteworthy Market Developments

The competitive landscape of the Vehicle to Grid (V2G) market is shaped by a diverse mix of specialized software aggregators and hardware manufacturers, each playing a critical role in advancing the technology and expanding its adoption. A notable example of this dynamic occurred in December 2025, when ABN AMRO announced its involvement as the financier of an innovative V2G project spanning the cities of Utrecht and Eindhoven. This ambitious initiative represents a collaboration between MyWheels, its parent company The Sharing Group, Renault Group, and We Drive Solar, culminating in the creation of the largest car-sharing service powered by V2G technology.

In the same month, the Australian Government launched the Vehicle-Grid Network (VGN), a national program designed to empower electric vehicle and plug-in hybrid owners to send excess power back to the electricity grid. This initiative reflects the increasing recognition by policymakers of the role that V2G technology can play in enhancing grid flexibility, supporting renewable energy integration, and providing economic benefits to vehicle owners.

Hyundai Motor Group also made significant strides in November 2025 by accelerating the global rollout of its advanced Vehicle-to-Everything (V2X) services. These innovative solutions enable electric vehicles to not only store and supply electricity but also share power with homes and power grids, effectively redefining the role of EVs within the global energy ecosystem. Hyundai's V2X technology emphasizes the multifunctional capabilities of electric vehicles, transforming them into active participants in energy management and distribution.

Another key development in November 2025 involved a collaborative demonstration of V2G technology at the Redwood Coast Airport Microgrid in McKinleyville, California. This project brought together Pacific Gas and Electric Company (PG&E), Nissan, Fermata Energy, and the Schatz Energy Research Center to showcase the integration of two Nissan Leaf vehicles with four bidirectional charging stations. The demonstration highlighted the practical applications of V2G technology in microgrid environments, where electric vehicles serve as distributed energy resources that enhance grid stability and resilience.

Core Growth Drivers

The surge in electric vehicle (EV) production and sales is having a profoundly positive impact on the growth of the Vehicle to Grid (V2G) market. Over the past decade, global EV sales have experienced remarkable annual growth, with data from Livemint revealing an approximate 30% increase each year from 2013 to 2023. This rapid expansion is underscored by the fact that 13 countries have surpassed the milestone where over 10% of new light-vehicle sales are electric, signaling a significant shift in consumer preference and automotive industry focus toward electrification. Further emphasizing this trend, the International Energy Agency (IEA) reported that EV sales in 2023 rose by an astonishing 3.5 million units compared to 2022, representing a 35% increase in just one year. Nearly 14 million new EVs were registered globally in 2023, with battery electric vehicles (BEVs) constituting 70% of the total electric car inventory for the year. This dominance of BEVs reflects their growing popularity due to improvements in battery technology, driving range, and charging infrastructure, which collectively enhance the appeal of fully electric vehicles.

Emerging Opportunity Trends

The primary drivers behind the surging demand in the Vehicle to Grid (V2G) market stem from the pressing need to modernize aging electrical grids and reduce operational costs. As the world experiences unprecedented growth in renewable energy adoption, grid operators face significant challenges in managing the inherent intermittency of sources such as solar and wind power. These renewable resources, while clean and sustainable, produce electricity that fluctuates based on weather conditions and time of day, leading to instability and reliability concerns for power grids. To address these fluctuations, grid operators require vast amounts of flexible energy storage that can absorb excess power during periods of high renewable generation and supply it back when demand exceeds supply.

Barriers to Optimization

Interoperability issues continue to pose a significant obstacle in the advancement of Vehicle to Grid (V2G) technology. One of the main challenges is the absence of universally accepted communication protocols that enable smooth interaction between electric vehicles (EVs), charging stations, and the power grid. Without standardized frameworks, different manufacturers and service providers often develop proprietary systems that are incompatible with one another, creating barriers to seamless integration. This lack of interoperability can lead to inefficiencies, increased costs, and limited scalability, ultimately slowing the adoption of V2G systems and restricting the full realization of their potential benefits.

Detailed Market Segmentation

By Vehicle Type, Battery Electric Vehicles (BEVs) dominate the Vehicle to Grid (V2G) market landscape, commanding a significant market share of over 69.24%. This dominance is largely due to the inherent advantages that BEVs offer in terms of energy storage capacity. Equipped with large battery packs, BEVs possess substantial energy export capabilities, making them ideally suited for V2G applications where vehicles not only consume energy but also supply it back to the grid when needed. The size and efficiency of these batteries allow BEVs to store considerable amounts of electricity, which can then be strategically discharged to support grid stability, manage peak demand, and provide ancillary services.

By Charging Type, Bidirectional charging technology serves as the fundamental mechanism that unlocks significant economic value within the Vehicle to Grid (V2G) market. By enabling electric vehicles not only to draw power from the grid but also to feed energy back into it, this technology creates a dynamic energy exchange that supports grid stability, helps balance demand, and opens new revenue streams for vehicle owners and grid operators alike. Reflecting its critical importance, bidirectional charging controlled over 60.10% of the market share in 2024, highlighting its dominance as the preferred charging type driving V2G adoption worldwide.

By Solution, Hardware components play a pivotal role in the Vehicle to Grid (V2G) market, commanding a substantial market share of over 69.25%. These physical components form the essential foundation that enables the entire V2G ecosystem to operate both safely and efficiently. Without robust and reliable hardware, the complex interactions between electric vehicles and the power grid would not be possible, as these components facilitate the crucial transfer of energy, communication, and control signals required for effective grid integration.

Segment Breakdown

By Vehicle Type

  • Battery Electric Vehicles (BEVs)
  • Plug-In Hybrid Electric Vehicles (PHEVs)
  • Fuel Cell Vehicles (FCVs)
  • Others

By Solution Type

  • Hardware
  • Electric Vehicle Supply Equipment (EVSE)
  • Smart Meters
  • V2G Chargers
  • Others
  • Software
  • V2G Program Administration
  • Dynamic Load Management System
  • Energy Management Systems (EMS)
  • Telematics & Cybersecurity
  • Others
  • Services
  • Professional
  • Managed Services

By Application

  • Peak Power Sales
  • Spinning Reserves
  • Base Load Power
  • Frequency Regulation
  • Voltage Regulation / Reactive Power Support
  • Load Balancing & Demand Response
  • Renewable Energy Integration
  • Others

By End Users

  • Commercial
  • Office Buildings
  • Retail
  • Malls
  • Others
  • Public Charging Stations / Charging Hubs
  • Fleet Depots & Shared Mobility
  • Utilities / Grid-Scale Aggregation
  • Others

By Region

  • North America
  • The U.S.
  • Canada
  • Mexico
  • Europe
  • Western Europe
  • The UK
  • Germany
  • France
  • Italy
  • Spain
  • Rest of Western Europe
  • Eastern Europe
  • Poland
  • Russia
  • Rest of Eastern Europe
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia & New Zealand
  • South Korea
  • ASEAN
  • Rest of Asia Pacific
  • Middle East & Africa (MEA)
  • Saudi Arabia
  • South Africa
  • UAE
  • Rest of MEA
  • South America
  • Argentina
  • Brazil
  • Rest of South America

Geography Breakdown

  • North America currently holds a commanding position in the global Vehicle to Grid (V2G) market, accounting for a dominant market share of 38.22%. This leadership is largely attributed to the advanced stage of implementation and operational maturity of key initiatives such as the Environmental Protection Agency's (EPA) Clean School Bus Program. This program not only supports the adoption of electric school buses but also integrates these vehicles into broader grid management strategies, enabling them to contribute to energy storage and load balancing. The success and scale of this initiative have played a crucial role in establishing North America as a frontrunner in the V2G market.
  • Within the region, California stands out as a particularly influential player, further strengthening North America's dominance through progressive regulatory reforms. The state's recent interconnection reforms have been instrumental in removing barriers for commercial fleet operators, enabling them to participate more actively in emergency load reduction programs. These reforms have unlocked significant economic opportunities, with estimates suggesting that commercial fleets in California could generate approximately USD 450 million in additional annual revenue by leveraging V2G technologies.

Leading Market Participants

  • Nissan Motor Corporation
  • Mitsubishi Motors Corporation
  • NUVVE Corporation
  • Fermata Energy
  • ENGIE Group
  • OVO Energy Ltd.
  • Renault Group
  • Honda Motor Co., Ltd.
  • Hyundai Motor Company
  • AC Propulsion
  • Edison International.
  • DENSO Co.
  • Hitachi
  • Next Energy
  • NRG Energy
  • OVO Energy Ltd.
  • ChargeScape
  • Other Prominent Players

Table of Content

Chapter 1. Executive Summary: Global Vehicle-to-Grid (V2G) Market

Chapter 2. Research Methodology & Research Framework

  • 2.1. Research Objective
  • 2.2. Product Overview
  • 2.3. Market Segmentation
  • 2.4. Qualitative Research
    • 2.4.1. Primary & Secondary Sources
  • 2.5. Quantitative Research
    • 2.5.1. Primary & Secondary Sources
  • 2.6. Breakdown of Primary Research Respondents, By Region
  • 2.7. Assumption for Study
  • 2.8. Market Size Estimation
  • 2.9. Data Triangulation

Chapter 3. Global Vehicle-to-Grid (V2G) Market Overview

  • 3.1. Industry Value Chain Analysis
    • 3.1.1. Raw Materials & Battery Cell Manufacturing
    • 3.1.2. Electric Vehicle Manufacturers (OEMs)
    • 3.1.3. Charging Hardware Providers (Bidirectional Chargers)
    • 3.1.4. Software Providers & Aggregators (V2G Management Platforms)
    • 3.1.5 Electric Vehicle Manufacturers (OEMs)
    • 3.1.6 End Users (Residential, Commercial, Fleet & Municipal)
  • 3.2. Industry Outlook
    • 3.2.1. Global Vehicle Sales, 2019-2024
    • 3.2.2. World Motor Vehicle Production, 2019-2024
    • 3.2.3. Analysis on V2G Units
    • 3.2.4. Leading Players Comparison Matrix
    • 3.3.6 Analysis on Charging Infrastructure
  • 3.3. PESTLE Analysis
  • 3.4. Porter's Five Forces Analysis
    • 3.4.1. Bargaining Power of Suppliers
    • 3.4.2. Bargaining Power of Buyers
    • 3.4.3. Threat of Substitutes
    • 3.4.4. Threat of New Entrants
    • 3.4.5. Degree of Competition
  • 3.5. Market Growth and Outlook
    • 3.5.1. Market Revenue Estimates and Forecast (US$ Mn), 2020-2035
  • 3.6. Market Attractiveness Analysis
    • 3.6.1. By Application
    • 3.6.2. By Region
    • 3.6.3. Actionable Insights (Analyst's Recommendations)

Chapter 4. Global Vehicle-to-Grid (V2G) Market Analysis

  • 4.1. Market Dynamics and Trends
    • 4.1.1. Growth Drivers
    • 4.1.2. Restraints
    • 4.1.3. Opportunity
    • 4.1.4. Key Trends
  • 4.2. Competition Dashboard
    • 4.2.1. Market Concentration Rate
    • 4.2.2. Company Market Share Analysis (Value %), 2024
    • 4.2.3. Competitor Mapping & Benchmarking
  • 4.3. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 4.3.1. By Vehicle Type
      • 4.3.1.1. Key Insights
        • 4.3.1.1.1. Battery Electric Vehicles (BEVs)
        • 4.3.1.1.2. Plug-In Hybrid Electric Vehicles (PHEVs)
        • 4.3.1.1.3. Fuel Cell Vehicles (FCVs)
        • 4.3.1.1.4. Others
    • 4.3.2. By Solution Type
      • 4.3.2.1. Key Insights
        • 4.3.2.1.1. Hardware
          • 4.3.2.1.1.1. Electric Vehicle Supply
          • 4.3.2.1.1.2. Smart Meters
          • 4.3.2.1.1.3. V2G Chargers
          • 4.3.2.1.1.4. Others
        • 4.3.2.1.2. Software
          • 4.3.2.1.2.1. V2G Program Administration
          • 4.3.2.1.2.2. Dynamic Load Management System
          • 4.3.2.1.2.3. Energy Management Systems (EMS)
          • 4.3.2.1.2.4. Telematics & Cybersecurity
          • 4.3.2.1.2.5. Others
        • 4.3.2.1.3. Services
          • 4.3.2.1.3.1. Professional
          • 4.3.2.1.3.2. Managed Services
    • 4.3.3. By Application
      • 4.3.3.1. Key Insights
        • 4.3.3.1.1. Peak Power Sales
        • 4.3.3.1.2. Spinning Reserves
        • 4.3.3.1.3. Base Load Power
        • 4.3.3.1.4. Frequency Regulation
        • 4.3.3.1.5. Voltage Regulation / Reactive Power Support
        • 4.3.3.1.6. Load Balancing & Demand Response
        • 4.3.3.1.7. Renewable Energy Integration
        • 4.3.3.1.8. Others
    • 4.3.4. By End Users
      • 4.3.4.1. Key Insights
        • 4.3.4.1.1. Residential (Private Homes)
        • 4.3.4.1.2. Commercial
          • 4.3.4.1.2.1. Office Buildings
          • 4.3.4.1.2.2. Retail
          • 4.3.4.1.2.3. Malls
          • 4.3.4.1.2.4. Others
        • 4.3.4.1.3. Public Charging Stations / Charging Hubs
        • 4.3.4.1.4. Fleet Depots & Shared Mobility
        • 4.3.4.1.5. Utilities / Grid-Scale Aggregation
        • 4.3.4.1.6. Others
    • 4.3.5. By Region
      • 4.3.5.1. Key Insights
        • 4.3.5.1.1. North America
          • 4.3.5.1.1.1. The U.S.
          • 4.3.5.1.1.2. Canada
          • 4.3.5.1.1.3. Mexico
        • 4.3.5.1.2. Europe
          • 4.3.5.1.2.1. Western Europe
  • 4.3.5.1.2.1.1. The UK
  • 4.3.5.1.2.1.2. Germany
  • 4.3.5.1.2.1.3. France
  • 4.3.5.1.2.1.4. Italy
  • 4.3.5.1.2.1.5. Spain
  • 4.3.5.1.2.1.6. Rest of Western Europe
          • 4.3.5.1.2.2. Eastern Europe
  • 4.3.5.1.2.2.1. Poland
  • 4.3.5.1.2.2.2. Russia
  • 4.3.5.1.2.2.3. Rest of Eastern Europe
        • 4.3.5.1.3. Asia Pacific
          • 4.3.5.1.3.1. China
          • 4.3.5.1.3.2. India
          • 4.3.5.1.3.3. Japan
          • 4.3.5.1.3.4. South Korea
          • 4.3.5.1.3.5. Australia & New Zealand
          • 4.3.5.1.3.6. ASEAN
  • 4.3.5.1.3.6.1.1. Indonesia
  • 4.3.5.1.3.6.1.2. Malaysia
  • 4.3.5.1.3.6.1.3. Thailand
  • 4.3.5.1.3.6.1.4. Singapore
  • 4.3.5.1.3.6.1.5. Rest of ASEAN
          • 4.3.5.1.3.7. Rest of Asia Pacific
        • 4.3.5.1.4. Middle East & Africa
          • 4.3.5.1.4.1. UAE
          • 4.3.5.1.4.2. Saudi Arabia
          • 4.3.5.1.4.3. South Africa
          • 4.3.5.1.4.4. Rest of MEA
        • 4.3.5.1.5. South America
          • 4.3.5.1.5.1. Argentina
          • 4.3.5.1.5.2. Brazil
          • 4.3.5.1.5.3. Rest of South America

Chapter 5. North America Vehicle-to-Grid (V2G) Market Analysis

  • 5.1. Market Dynamics and Trends
    • 5.1.1. Growth Drivers
    • 5.1.2. Restraints
    • 5.1.3. Opportunity
    • 5.1.4. Key Trends
  • 5.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 5.2.1. By Vehicle Type
    • 5.2.2. By Solution Type
    • 5.2.3. By Application
    • 5.2.4. By End Users
    • 5.2.5. By Country

Chapter 6 Europe Vehicle-to-Grid (V2G) Market Analysis

  • 6.1. Market Dynamics and Trends
    • 6.1.1. Growth Drivers
    • 6.1.2. Restraints
    • 6.1.3. Opportunity
    • 6.1.4. Key Trends
  • 6.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 6.2.1. By Vehicle Type
    • 6.2.2. By Solution Type
    • 6.2.3. By Application
    • 6.2.4. By End Users
    • 6.2.5. By Country

Chapter 7. Asia Pacific Vehicle-to-Grid (V2G) Market Analysis

  • 7.1. Market Dynamics and Trends
    • 7.1.1. Growth Drivers
    • 7.1.2. Restraints
    • 7.1.3. Opportunity
    • 7.1.4. Key Trends
  • 7.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 7.2.1. By Vehicle Type
    • 7.2.2. By Solution Type
    • 7.2.3. By Application
    • 7.2.4. By End Users
    • 7.2.5. By Country

Chapter 8. Middle East & Africa Vehicle-to-Grid (V2G) Market Analysis

  • 8.1. Market Dynamics and Trends
    • 8.1.1. Growth Drivers
    • 8.1.2. Restraints
    • 8.1.3. Opportunity
    • 8.1.4. Key Trends
  • 8.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 8.2.1. By Vehicle Type
    • 8.2.2. By Solution Type
    • 8.2.3. By Application
    • 8.2.4. By End Users
    • 8.2.5. By Country

Chapter 9. South America Vehicle-to-Grid (V2G) Market Analysis

  • 9.1. Market Dynamics and Trends
    • 9.1.1. Growth Drivers
    • 9.1.2. Restraints
    • 9.1.3. Opportunity
    • 9.1.4. Key Trends
  • 9.2. Market Size and Forecast, 2020-2035 (US$ Mn)
    • 9.2.1. By Vehicle Type
    • 9.2.2. By Solution Type
    • 9.2.3. By Application
    • 9.2.4. By End Users
    • 9.2.5. By Country

Chapter 10. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 10.1. Nissan Motor Corporation
  • 10.2. Mitsubishi Motors Corporation
  • 10.3. NUVVE Corporation
  • 10.4. Fermata Energy
  • 10.5. ENGIE Group
  • 10.6. OVO Energy Ltd.
  • 10.7. Renault Group
  • 10.8. Honda Motor Co., Ltd.
  • 10.9. Hyundai Motor Company
  • 10.10. AC Propulsion
  • 10.11. Edison International.
  • 10.12. DENSO Co.
  • 10.13. Hitachi
  • 10.14. Next Energy
  • 10.15. NRG Energy
  • 10.16. OVO Energy Ltd.
  • 10.17. ChargeScape
  • 10.18. Other Prominent Players

Chapter 11. Annexure

  • 11.1. List of Secondary Sources
  • 11.2. Key Country Markets- Macro Economic Outlook/Indicators