封面
市场调查报告书
商品编码
1643850

燃料电池电动卡车产业二氧化碳排放生命週期:欧洲,2024-2040 年

CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector, Europe, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 65 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

清洁的氢气生产源将大幅减少二氧化碳排放并推动转型成长

这份 Frost & Sullivan 报告研究了燃料电池电动卡车 (FCET) 的二氧化碳 (CO2)排放,重点关注欧洲(特别是德国、法国和西班牙)卡车运输行业的氢燃料选择。本报告分析了氢气与传统燃料相比减少生命週期排放的潜力。我们探索不同的氢气生产方法,从灰氢到可再生氢源,每种方法都有自己的碳足迹。它主要关注燃料电池汽车生产过程中产生的二氧化碳排放,特别是燃料电池堆和氢气储存槽等零件排放的二氧化碳排放。该研究还比较了 FCET 与电动卡车和柴油卡车运行过程中的二氧化碳总排放。它强调需要更清洁的氢气生产方法和改进的汽车製造工艺,以大幅减少卡车领域的二氧化碳排放。报告最后指出了市场参与者和相关人员应该利用的该领域出现的机会。

目录

变形

  • 成长为何变得越来越艰难?
  • The Strategic Imperative 8(TM)
  • 三大策略对燃料电池电动卡车(FCET)产业生命週期二氧化碳排放的影响

成长环境:H2生态系统

  • H2 是未来的燃料
  • H2 作为 FCET 燃料的生命週期流程
  • 各种 H2 生产方法

生态系统

  • 研究范围
  • 动力传动系统技术细分

成长引擎

  • 成长动力
  • 成长抑制因素

成长发生器:氢气生产过程中的二氧化碳排放轨迹

  • 主要氢气生产方法分析
  • 影响氢气生产途径采用的关键因素 - 政策与目标
  • 影响采用氢气生产途径的关键因素-公布清洁氢气生产能力和消费量
  • 影响采用 H2 生产途径的关键因素 - 欧洲氢能骨干网 (EHB) 和关键走廊
  • 西班牙氢气生产采用预测
  • H2 生产采用预测-法国
  • H2 产量引入预测-德国
  • 氢气生产过程中的二氧化碳排放

成长发电机:FECT 生产过程中的二氧化碳排放轨迹

  • FCET的主要成分
  • 影响二氧化碳排放轨迹的FCET关键零件-FC电堆、氢气储存槽、电池
  • FCET 组件中的主要 CO2 贡献
  • CO2排放轨迹 - FCET 製造

成长发电机:FCET 运作期间的二氧化碳排放轨迹 - LDT

  • LDT使用案例和预测假设的特点
  • LDT 循环 A 及 H-H2消费量及 CO2排放
  • LDT 循环 A - H-kg-CO2/km

成长发电机:FCET 运作期间的二氧化碳排放轨迹 - MDT

  • MDT使用案例特征和预测假设
  • MDT 循环 A 和 H-H2消费量和 CO2排放
  • MDT 循环 A - H-kg-CO2/km

成长发电机:FCET 运作期间的二氧化碳排放轨迹 - HDT

  • HDT使用案例特征和预测假设
  • HDT循环A-H2消费量及CO2排放
  • HDT循环H-H2消费量及CO2排放
  • HDT 循环 A - H-kg-CO2/km

成长引擎:比较内燃机汽车、纯电动车和燃料电池电动车的二氧化碳排放轨迹

  • LDT-ICE、BEV、FCEV 比较(A 循环、H 循环)
  • MDT-ICE、BEV、FCEV 比较(A 循环、H 循环)
  • HDT-ICE、BEV、FCEV 比较(A 循环、H 循环)

成长机会宇宙

  • 成长机会 1:追踪二氧化碳排放
  • 成长机会 2:按地区分類的电池和燃料电池製造垂直整合
  • 成长机会三:扩大氢能基础设施

关键要点:

  • 前 3 项

附录与后续步骤

  • 成长机会的好处和影响
  • 后续步骤Next steps
  • 附件列表
  • 免责声明
简介目录
Product Code: PFO7-42

Clean H2 Production Sources will Drive Transformational Growth by Significantly Reducing CO2 Emissions

This Frost & Sullivan report examines the carbon dioxide (CO2) emissions of fuel cell electric trucks (FCETs), focusing on hydrogen as a fuel option for the trucking industry in Europe, specifically Germany, France, and Spain. The report analyzes the potential of hydrogen to mitigate life cycle emissions compared to conventional fuels. It explores different methods for producing hydrogen, from grey hydrogen to renewable sources, each with its own carbon footprint. It highlights the CO2 emissions related to the production of fuel cell vehicles, especially from parts like fuel cell stacks and hydrogen storage tanks. The report also compares the total CO2 emissions of FCETs during operation with those of battery electric and diesel trucks. It stresses the need for cleaner hydrogen production methods and improved vehicle manufacturing processes to significantly reduce CO2 emissions in the trucking sector. The report concludes by identifying the opportunities emerging from this space for market players and stakeholders to leverage.

Table of Contents

Transformation

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on the CO2 Emissions Life Cycle in the Fuel Cell Electric Truck (FCET) Industry

Growth Environment: H2 Ecosystem

  • H2 is the Fuel of the Future
  • Life Cycle Flow of H2 as a Fuel for FCETs
  • Different H2 Production Methods

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

Growth Generator: CO2 Emission Trail During H2 Production

  • Analysis of Major H2 Production Methods
  • Key Factors Impacting H2 Production Pathway Adoption-Policies and Targets
  • Key Factors Impacting H2 Production Pathway Adoption-Announced Clean H2 Capacities and Consumption
  • Key Factors Impacting H2 Production Pathway Adoption-European Hydrogen Backbone (EHB) and Key Corridors
  • Adoption Forecast of H2 Production-Spain
  • Adoption Forecast of H2 Production-France
  • Adoption Forecast of H2 Production-Germany
  • CO2 Emission Trail from H2 Production

Growth Generator: CO2 Emission Trail During FECT Manufacturing

  • Major Components of an FCET
  • Major FCET Components Impacting the CO2 Emissions Trail-FC Stack, H2 Storage Tank, and Battery
  • Major CO2 Contributions Within FCET Components
  • CO2 Emission Trail-FCET Manufacturing

Growth Generator: CO2 Emission Trail During FCET Operation-LDT

  • LDT Use Case Characteristics and Forecast Assumptions
  • LDT Cycles A and H-H2 Consumption and CO2 Emissions
  • LDT Cycles A to H-kg CO2/km

Growth Generator: CO2 Emission Trail during FCET Operation-MDT

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycles A and H-H2 Consumption and CO2 Emissions
  • MDT Cycles A to H-kg CO2/km

Growth Generator: CO2 Emission Trail during FCET Operation-HDT

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT Cycle A-H2 Consumption and CO2 Emissions
  • HDT Cycle H-H2 Consumption and CO2 Emissions
  • HDT Cycle A to H-kg CO2/km

Growth Generator: CO2 Emission Trail Comparison between ICE Vehicles, BEVs, and FCEVs

  • LDT-ICE, BEV, and FCEV Comparison (Cycles A and H)
  • MDT-ICE, BEV, and FCEV Comparison (Cycles A and H)
  • HDT-ICE, BEV, and FCEV Comparison (Cycles A and H)

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Geographic-specific Vertical Integration for Battery and FC Manufacture
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Key Takeaways

  • Top 3 Takeaways

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer