封面
市场调查报告书
商品编码
1858847

汽车雷达半导体市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Automotive Radar Semiconductors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车雷达半导体市场价值为 29 亿美元,预计到 2034 年将以 12.4% 的复合年增长率增长至 93 亿美元。

汽车雷达半导体市场 - IMG1

该市场的稳定扩张归功于先进驾驶辅助系统(ADAS) 的广泛应用和自动驾驶技术的日益普及。雷达半导体是这些系统的核心组件,可实现自适应巡航控制、车道维持、障碍物侦测和碰撞缓解等功能。随着汽车行业电气化和互联技术的进步,这些晶片对于实现即时安全响应至关重要。该市场与更广泛的半导体技术发展同步演进,重点关注性能、可靠性和供应链韧性。全球监管机构对车辆安全改进的大力支持也加速了半导体整合。随着汽车生态系统快速向智慧出行转型,雷达积体电路和模组对于建立更智慧、更安全的驾驶环境至关重要。随着半导体研发投入的增加,这些组件有望主导汽车电子领域,尤其是在旨在增强车辆感知、控制和决策能力的雷达系统中。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 29亿美元
预测值 93亿美元
复合年增长率 12.4%

由于收发器晶片(MMIC)在雷达讯号的发射和接收中发挥关键作用,预计到2024年,其市场份额将达到34%,占据市场主导地位。这些晶片广泛应用于远端和近程雷达系统,并提供探测车辆、行人和道路危险所需的高频精度。其卓越的性能和可靠性持续推动ADAS和自动驾驶平台的应用。随着全球车辆自动化规模的扩大,预计对这些雷达收发器的需求将保持强劲。

预计到2034年,77 GHz雷达频段的年复合成长率将达到13.6%。该频段因其能够提供更高的解析度和更远的探测距离而成为远端雷达的首选频段,这对于前向碰撞预警、高速公路驾驶辅助和自适应巡航系统等应用至关重要。它已成为豪华车和中檔车寻求增强驾驶辅助功能的标配。

预计到2024年,中国汽车雷达半导体市场规模将达到11.9亿美元。随着智慧交通系统的快速发展,中国在汽车雷达应用方面处于领先地位。政府对安全标准和电动车推广的大力支持,显着推动了雷达积体电路在各类车辆中的应用。国内外汽车製造商的不断涌入,进一步增强了该地区对高性能雷达半导体解决方案的需求。

汽车雷达半导体市场的主要参与者包括意法半导体 (STMicroelectronics)、瑞萨电子 (Renesas Electronics)、亚德诺半导体 (ADI)、英飞凌科技 (Infineon Technologies)、德州仪器 (TI)、Qorvo、Uhnder、恩智浦半导体 (Infineon Technologies)、德州仪器 (TI)、Qorvo、Uhnder、恩智浦半导体 (VNX Sy)、BNX Sap取s)、Varb为了保持竞争力,汽车雷达半导体市场的企业正采取积极的策略,包括加强研发投入,以提升晶片性能、降低功耗并实现与下一代汽车系统的整合。与汽车製造商和一级供应商建立合作关係对于使雷达积体电路设计与高级驾驶辅助系统 (ADAS) 和自动驾驶汽车的要求保持一致也至关重要。领先企业正在扩大产能以满足不断增长的需求,同时也在丰富产品组合,以满足从短程雷达到全端自动驾驶系统的各种应用需求。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预报
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 价值链分析
    • 上游价值链
    • 中游价值链
    • 下游价值链
  • 产业影响因素
    • 成长驱动因素
      • 提高ADAS采用率
      • 自动驾驶汽车的发展
      • 紧凑一体化设计
      • 提高车辆电气化程度
    • 产业陷阱与挑战
      • 高昂的开发和生产成本
      • 恶劣环境下的技术挑战
      • 供应链中断
      • 网路安全问题
    • 市场机会
      • 新兴市场的扩张
      • 与人工智慧和感测器融合的集成
      • 政府奖励措施和安全法规
      • 商用和车队车辆的采用
  • 成长潜力分析
  • 监管环境
    • 联合国欧洲经济委员会第152号法规-高级紧急煞车系统(AEBS)
    • 欧盟通用安全法规
    • 美国联邦机动车辆安全标准(FMVSS)
    • 中国工信部智慧网联汽车指南2024
    • 日本多学科自动驾驶安全框架
  • 波特的分析
  • PESTEL 分析
  • 未来趋势
  • 技术与创新格局
    • 目前技术
      • 77 GHz 与 79 GHz 毫米波雷达技术
      • 4D成像雷达
      • 基于CMOS和SiGe的雷达SoC
    • 新兴技术
      • 数位波束形成雷达
      • 人工智慧驱动的雷达讯号处理
      • 雷达视觉感测器融合SoC
  • 价格趋势
    • 副产品
    • 按地区
  • 专利分析
  • 成本細項分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
    • 碳足迹考量
  • 车辆系统整合与感测器融合
    • 多感测器架构的复杂性
    • 雷达-摄影机融合挑战
    • 雷达-光达融合策略
    • ECU整合和处理要求
    • 即时资料融合演算法
  • ADAS应用效能最佳化
    • 特定应用雷达要求
    • 范围与分辨率之间的权衡
    • 角度解析度增强需求
    • 速度测量精度
    • 多目标侦测能力
  • 雷达晶片设计与製造挑战
    • 硅製程技术选择
    • 射频电路设计的复杂性
    • 封装内天线集成
    • 热管理解决方案
    • 功耗优化
  • 汽车供应链与资格认证
    • 汽车级零件认证
    • AEC-Q100 合规性要求
    • 长期供应保障
    • 供应链风险缓解
  • 软体-硬体协同设计演进
    • 软体定义雷达架构
    • 可配置讯号处理
    • 空中升级功能
    • 人工智慧演算法集成
  • 汽车安全标准合规性
    • ISO 26262 功能安全要求
    • ASIL评级及风险评估
    • 安全案例开发
    • 危害分析与风险评估(HARA)
  • 环境与营运挑战
    • 天气条件性能
    • 干扰缓解策略
    • 多路径反射处理
    • 城市峡谷表演
    • 温度变化补偿
  • 成本优化与价值工程
    • 晶片架构成本分析
    • 集成度与成本之间的权衡
    • 批量生产经济学
    • 系统总成本最佳化

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依组件划分,2021-2034年

  • 主要趋势
  • 硬体
    • 射频前端与天线
    • 讯号处理器
    • 感测器封装及模组
  • 软体
    • 讯号处理软体
    • 感测器融合与人工智慧软体
    • 校准与测试软体
  • 服务

第六章:市场估计与预测:依频段划分,2021-2034年

  • 主要趋势
  • 24 GHz
  • 77 GHz
  • 79 GHz

第七章:市场估算与预测:依区间划分,2021-2034年

  • 主要趋势
  • 短程雷达(SRR)
  • 中程雷达(MRR)
  • 远程雷达(LRR)
  • 成像雷达

第八章:市场估算与预测:以一体化程度划分,2021-2034年

  • 主要趋势
  • 仅收发器型晶片雷达
  • 完整的雷达SoC(系统单晶片)
  • 数位/成像雷达晶片

第九章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • ADAS安全系统
    • 盲点侦测(BSD)
    • 自动紧急煞车(AEB)
    • 自适应巡航控制(ACC)
    • 避免碰撞
  • 自动驾驶功能
    • 高速公路自动驾驶
    • 城市自动驾驶
    • 感测器融合
  • 机舱内解决方案
  • 电动车专用解决方案

第十章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧
    • 波兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳新银行
    • 越南
    • 新加坡
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第十一章:公司简介

  • 全球参与者
    • Texas Instruments
    • NXP Semiconductors
    • Infineon Technologies
    • Analog Devices
    • STMicroelectronics
    • Renesas Electronics
    • Qualcomm Technologies
    • Broadcom
  • 区域玩家
    • Continental
    • Robert Bosch
    • Denso
    • Aptiv
    • Valeo
    • Magna International
    • ZF Friedrichshafen
    • Veoneer (Arriver)
  • 新兴参与者和颠覆者
    • Arbe Robotics
    • Oculii Corp (Ambarella)
    • Uhnder
    • Steradian Semiconductors
    • Echodyne
    • Metawave
    • Ainstein AI
    • RFISee
    • Vayyar Imaging
简介目录
Product Code: 14884

The Global Automotive Radar Semiconductors Market was valued at USD 2.9 billion in 2024 and is estimated to grow at a CAGR of 12.4% to reach USD 9.3 billion by 2034.

Automotive Radar Semiconductors Market - IMG1

The steady expansion of this market is attributed to the widespread implementation of advanced driver assistance systems (ADAS) and the growing presence of autonomous driving technologies. Radar semiconductors are a core component of these systems, allowing for functions like adaptive cruise control, lane-keeping, obstacle detection, and collision mitigation. As electrification and connectivity advance in the auto industry, these chips are increasingly critical for enabling real-time safety responses. The market continues to evolve alongside broader semiconductor advancements, with emphasis on performance, reliability, and supply chain resilience. Strong support from regulatory bodies worldwide for safety enhancements in vehicles is also accelerating semiconductor integration. With the automotive ecosystem shifting rapidly toward smart mobility, radar ICs and modules are becoming essential for enabling smarter and safer driving environments. As semiconductor R&D efforts grow, these components are expected to dominate the automotive electronics landscape, particularly in radar-powered systems designed to enhance vehicle awareness, control, and decision-making.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.9 Billion
Forecast Value$9.3 Billion
CAGR12.4%

The transceiver chips (MMICs) segment led the market with a 34% share in 2024, due to their pivotal role in transmitting and receiving radar signals. These chips are widely deployed across both long-range and short-range radar systems and offer the high-frequency precision necessary for detecting vehicles, pedestrians, and road hazards. Their superior performance and reliability continue to drive adoption across ADAS and autonomous platforms. As vehicle automation scales globally, demand for these radar transceivers is projected to remain strong.

The 77 GHz radar band segment is forecasted to grow at a 13.6% CAGR through 2034. This frequency band is preferred for long-range radar due to its ability to deliver higher resolution and longer detection range, which is crucial for applications such as forward collision warning, highway driving assistance, and adaptive cruise systems. It has become a staple in both luxury and mid-tier vehicles seeking enhanced driver assistance features.

China Automotive Radar Semiconductors Market generated USD 1.19 billion in 2024. With rapid development in intelligent transportation systems, China is leading the way in automotive radar adoption. Strong governmental support for safety standards and EV promotion has significantly boosted radar IC deployment across vehicle categories. The growing presence of both global and domestic automakers has further strengthened demand for high-performance radar semiconductor solutions in the region.

Key players active in the Automotive Radar Semiconductors Market are STMicroelectronics, Renesas Electronics, Analog Devices (ADI), Infineon Technologies, Texas Instruments (TI), Qorvo, Uhnder, NXP Semiconductors, Vayyar Imaging, and Arbe Robotics. Companies in the Automotive Radar Semiconductors Market are adopting aggressive strategies to stay competitive, including high investment in research and development to enhance chip performance, reduce power consumption, and enable integration with next-gen vehicle systems. Partnerships with automakers and tier-1 suppliers are also key for aligning radar IC design with ADAS and autonomous vehicle requirements. Leading players are expanding production capacity to meet growing demand while diversifying their product portfolios to cater to a range of applications from short-range radar to full-stack autonomous systems.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Frequency band
    • 2.2.4 Range
    • 2.2.5 Integration level
    • 2.2.6 Application
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook
  • 2.6 Strategic recommendations
    • 2.6.1 Supply chain diversification strategy
    • 2.6.2 Product portfolio enhancement
    • 2.6.3 Partnership and alliance opportunities
    • 2.6.4 Cost management and pricing strategy

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Value chain analysis
    • 3.2.1 Upstream value chain
    • 3.2.2 Midstream value chain
    • 3.2.3 Downstream value chain
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Increasing ADAS adoption
      • 3.3.1.2 Growth of autonomous vehicles
      • 3.3.1.3 Compact and integrated design
      • 3.3.1.4 Increasing vehicle electrification
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High development and production costs
      • 3.3.2.2 Technical challenges in harsh environments
      • 3.3.2.3 Supply chain disruptions
      • 3.3.2.4 Cybersecurity concerns
    • 3.3.3 Market opportunities
      • 3.3.3.1 Expansion in emerging markets
      • 3.3.3.2 Integration with ai and sensor fusion
      • 3.3.3.3 Government incentives and safety regulations
      • 3.3.3.4 Adoption in commercial and fleet vehicles
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
    • 3.5.1 UNECE regulation no. 152 - advanced emergency braking systems (AEBS)
    • 3.5.2 Eu general safety regulation
    • 3.5.3 US federal motor vehicle safety standards (FMVSS)
    • 3.5.4 China miit intelligent and connected vehicle guidelines 2024
    • 3.5.5 Japan mlit autonomous driving safety framework
  • 3.6 Porter's analysis
  • 3.7 PESTEL analysis
  • 3.8 Future trends
  • 3.9 Technology and Innovation landscape
    • 3.9.1 Current technologies
      • 3.9.1.1 77 ghz and 79 ghz mmwave radar technology
      • 3.9.1.2 4d imaging radar
      • 3.9.1.3 CMOS and SiGe-based radar socs
    • 3.9.2 Emerging technologies
      • 3.9.2.1 Digital beamforming radar
      • 3.9.2.2 AI-powered radar signal processing
      • 3.9.2.3 Radar-vision sensor fusion Socs
  • 3.10 Price trends
    • 3.10.1 By product
    • 3.10.2 By region
  • 3.11 Patent analysis
  • 3.12 Cost breakdown analysis
  • 3.13 Sustainability and environmental aspects
    • 3.13.1 Sustainable practices
    • 3.13.2 Waste reduction strategies
    • 3.13.3 Energy efficiency in production
    • 3.13.4 Eco-friendly Initiatives
    • 3.13.5 Carbon footprint considerations
  • 3.14 Vehicle System Integration & Sensor Fusion
    • 3.14.1 Multi-sensor architecture complexity
    • 3.14.2 Radar-camera fusion challenges
    • 3.14.3 Radar-LiDAR integration strategies
    • 3.14.4 ECU integration & processing requirements
    • 3.14.5 Real-time data fusion algorithms
  • 3.15 ADAS Application Performance Optimization
    • 3.15.1 Application-specific radar requirements
    • 3.15.2 Range vs resolution trade-offs
    • 3.15.3 Angular resolution enhancement needs
    • 3.15.4 Velocity measurement accuracy
    • 3.15.5 Multi-target detection capabilities
  • 3.16 Radar Chip Design & Manufacturing Challenges
    • 3.16.1 Silicon process technology selection
    • 3.16.2 RF circuit design complexity
    • 3.16.3 Antenna-in-package integration
    • 3.16.4 Thermal management solutions
    • 3.16.5 Power consumption optimization
  • 3.17 Automotive Supply Chain & Qualification
    • 3.17.1 Automotive-grade component qualification
    • 3.17.2 AEC-Q100 compliance requirements
    • 3.17.3 Long-term supply assurance
    • 3.17.4 Supply chain risk mitigation
  • 3.18 Software-Hardware Co-Design Evolution
    • 3.18.1 Software-defined radar architecture
    • 3.18.2 Configurable signal processing
    • 3.18.3 Over-the-air update capabilities
    • 3.18.4 AI algorithm integration
  • 3.19 Automotive Safety Standards Compliance
    • 3.19.1 ISO 26262 functional safety requirements
    • 3.19.2 ASIL rating & risk assessment
    • 3.19.3 Safety case development
    • 3.19.4 Hazard analysis & risk assessment (HARA)
  • 3.20 Environmental & Operational Challenges
    • 3.20.1 Weather condition performance
    • 3.20.2 Interference mitigation strategies
    • 3.20.3 Multi-path reflection handling
    • 3.20.4 Urban canyon performance
    • 3.20.5 Temperature variation compensation
  • 3.21 Cost Optimization & Value Engineering
    • 3.21.1 Chip architecture cost analysis
    • 3.21.2 Integration level vs cost trade-offs
    • 3.21.3 Volume production economics
    • 3.21.4 Total system cost optimization

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis, 2024
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($Mn, Units)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 RF Front-End & Antennas
    • 5.2.2 Signal Processors
    • 5.2.3 Sensor Packaging & Modules
  • 5.3 Software
    • 5.3.1 Signal Processing Software
    • 5.3.2 Sensor Fusion & AI Software
    • 5.3.3 Calibration & Testing Software
  • 5.4 Services

Chapter 6 Market Estimates & Forecast, By Frequency Band, 2021 - 2034 ($Mn, Units)

  • 6.1 Key trends
  • 6.2 24 GHz
  • 6.3 77 GHz
  • 6.4 79 GHz

Chapter 7 Market Estimates & Forecast, By Range, 2021 - 2034 ($Mn, Units)

  • 7.1 Key trends
  • 7.2 Short-Range Radar (SRR)
  • 7.3 Medium-Range Radar (MRR)
  • 7.4 Long-Range Radar (LRR)
  • 7.5 Imaging Radar

Chapter 8 Market Estimates & Forecast, By Integration level, 2021 - 2034 ($Mn, Units)

  • 8.1 Key trends
  • 8.2 Transceiver-Only Radar-on-Chip
  • 8.3 Complete Radar SoC (System-on-Chip)
  • 8.4 Digital/Imaging Radar Chips

Chapter 9 Market Estimates & Forecast, By Application, 2021 - 2034 ($Mn, Units)

  • 9.1 Key trends
  • 9.2 ADAS Safety Systems
    • 9.2.1 Blind-spot detection (BSD)
    • 9.2.2 Autonomous emergency braking (AEB)
    • 9.2.3 Adaptive cruise control (ACC)
    • 9.2.4 Collision avoidance
  • 9.3 Autonomous Driving Functions
    • 9.3.1 Highway autopilot
    • 9.3.2 Urban automated driving
    • 9.3.3 Sensor fusion
  • 9.4 In cabin solution
  • 9.5 EV specific solutions

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($Mn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Poland
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 South Korea
    • 10.4.5 ANZ
    • 10.4.6 Vietnam
    • 10.4.7 Singapore
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 South Africa
    • 10.6.2 Saudi Arabia
    • 10.6.3 UAE

Chapter 11 Company Profiles

  • 11.1 Global players
    • 11.1.1 Texas Instruments
    • 11.1.2 NXP Semiconductors
    • 11.1.3 Infineon Technologies
    • 11.1.4 Analog Devices
    • 11.1.5 STMicroelectronics
    • 11.1.6 Renesas Electronics
    • 11.1.7 Qualcomm Technologies
    • 11.1.8 Broadcom
  • 11.2 Regional players
    • 11.2.1 Continental
    • 11.2.2 Robert Bosch
    • 11.2.3 Denso
    • 11.2.4 Aptiv
    • 11.2.5 Valeo
    • 11.2.6 Magna International
    • 11.2.7 ZF Friedrichshafen
    • 11.2.8 Veoneer (Arriver)
  • 11.3 Emerging players and disruptors
    • 11.3.1 Arbe Robotics
    • 11.3.2 Oculii Corp (Ambarella)
    • 11.3.3 Uhnder
    • 11.3.4 Steradian Semiconductors
    • 11.3.5 Echodyne
    • 11.3.6 Metawave
    • 11.3.7 Ainstein AI
    • 11.3.8 RFISee
    • 11.3.9 Vayyar Imaging