封面
市场调查报告书
商品编码
1640399

零售分析 -市场占有率分析、产业趋势与统计、成长预测(2025-2030 年)

Retail Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

零售分析市场规模在 2025 年估计为 66 亿美元,预计到 2030 年将达到 81.2 亿美元,预测期内(2025-2030 年)的复合年增长率为 4.23%。

零售分析-市场-IMG1

零售业的资料分析可以透过分析历史资料来实现更明智的决策、改善业务并增加销售。最终用户资料和供应链和库存管理等后端流程都是资料分析的一级资讯来源。

关键亮点

  • 商业智慧和分析系统已与后端应用程式集成,以更好地了解消费者行为,从而推动一致的客户对话。随着全通路策略的采用,分析现在可以整合不同的资料来源来解决多个管道问题并透过客户喜欢的管道与他们沟通。向强大个人化迈出的又一步提高了典型的客户终身价值和接触点。因此,当今的零售商越来越多地收集和分析位置资讯、社交情绪和点选流等资料。
  • 数位化透过捕捉消费行为资料来改善消费者体验和零售业务,从而推动零售分析行业向前发展。采用零售分析的一个主要好处是它提供有关客户行为的具体且有意义的资料。了解如何估算财务回报可以让企业经理更轻鬆地管理公司的每个部门,而零售分析则可以提供企业用于做出选择的资讯。从分析社群媒体评论到了解宣传活动对店内转换率的有效性,零售分析让商家清楚了解他们的业务。
  • IBM的一项调查显示,高层估计新冠疫情使数位化加速了67%,此外,疫情也促使他们将「提高业务效率」作为首要任务,这一比例高达92%。
  • 电子商务的出现使得扩张实体店的传统成长途径变得过时。线上平台、在地化分类和国际市场扩张彻底改变了商品行销分析的方法。来自线上平台的激烈竞争迫使零售商进入该领域,并在分类、定价、促销、采购、补货以及店内规划和执行方面获得更深入的了解。
  • 新冠疫情引发了零售业的数位化。疫情迫使零售业从传统零售业迅速转向以人工智慧和分析等强大的数位工具为中心的现代电子商务策略。线上消费习惯的广泛采用正在加剧对数位创新和颠覆的需求。越来越多地使用人工智慧来个性化购物体验,提高客户维繫并提高销售效率,这可能会促进业务成长。

零售分析市场趋势

店内营运占主要份额

  • 基于店内营运的分析已成为实体零售商商业策略的重要组成部分。进一步了解忠实客户可以製定策略,透过向合适的客户提供合适的产品来提高客户保留率。
  • 零售商可以利用多种技术为消费者提供客製化体验,包括评估客户偏好、识别他们在商店中的位置、有针对性的促销和购买习惯,以改善店内体验。店内监控技术分析这些趋势并提供有价值的见解,帮助商家增加收益、销售额和客流量。
  • 例如,2022 年 6 月,亚马逊推出了新的 Store Analytics 服务。目前,电子商务巨头正寻求透过向负责人提供有关客户购买情况的资料来从实体店中获利。
  • 据 NewGenApps 称,选择充分利用巨量资料分析潜力的商家的营业利润可提高 60%。此外,全通路零售商可以监控商店购买行为,并向客户提供及时的讯息,以奖励商店购买和随后的线上销售,推动零售商内部的交易。
  • 资料分析顾问公司 Quantzig 利用微目标行销帮助一家德国时尚零售商提高了 12% 的店内销售额和利润。该零售商面临的挑战主要集中在如何在正确的时间向正确的资源提供见解、分析策略缺乏清晰度以及资料品质差。

欧洲占很大份额

  • 欧洲市场因 IBM 公司和 SAP SE 等主要参与者的存在而蓬勃发展,它们是预测和高级零售分析软体的领先供应商。此外,该地区拥有超过 600 万家企业,并僱用了超过 3,300 万人。欧洲是许多全球最大零售商的所在地,包括乐购、家乐福、利德尔、麦德龙和阿尔迪。
  • 最受欢迎的网路嗜好之一是网购。网上购物为顾客提供了各种各样的产品,并为电子商务公司带来了许多销售挑战。此外,零售业越来越多地采用云端服务可能会在不久的将来为欧洲零售分析市场带来潜力。
  • 例如,2022 年 10 月,艾利丹尼森宣布与 SAP 合作,连接各自的分析产品云,帮助超级市场监控和优化产品保质期,加速零售业解决废弃物问题透过OEM协议,两家公司同意将 SAP Analytics Cloud 嵌入艾利丹尼森的 atma.io 互联产品云中。据报道,资料将透过 atma.io 提供给 SAP Analytics 工具,以及使用艾利丹尼森数位辨识技术(如无线射频辨识 (RFID))标记的产品。
  • 利用先进的分析技术使网路购物变得更加智能,我们可以帮助商家透过结合店内和线上资料来客製化定位。

零售分析行业概览

零售分析市场竞争适中。市场中一些主要的参与企业包括 IBM Corporation、Oracle Corporation、SAP SE、SAS Institute Inc.、Salesforce.com Inc. Tableau Software Inc.市场参与企业正在创新,提供策略解决方案,以扩大其市场影响力和基本客群。这将使您能够赢得新契约并开拓新市场。主要市场发展包括:

  • 2023 年 9 月,Oracle 与 Uber 合作宣布推出“Collect and Receive”,这是 Oracle 零售平台上的一项新服务,旨在连接零售商和消费者,以增强和丰富最后一英里的配送。在 Oracle Retail Data Store 和云端平台技术的支援下,零售商可以透过预先整合的 API 连结到该公司的配送解决方案 Uber Direct。此联合解决方案将使零售商能够平衡库存,同时为客户提供更多选择,包括当日配送和预定送货选项、订单提货和退货至最近的零售店或邮局。
  • 2023 年 6 月,Salesforce 和 Google 宣布建立合作伙伴关係,以协助公司利用资料和AI 提供更个人化的客户体验,更了解客户行为,并在行销、销售、服务和商业领域推动业务成果。我们扩大了策略伙伴关係关係帮助您以更低的成本进行更有效的宣传活动。两项新的资料和人工智慧创新带来了即时资料共用以及增强的预测和生成人工智慧能力。企业可以利用第一方资料和自订AI 模型来更好地预测客户需求,并降低跨平台同步资料的成本、风险和复杂性。

其他福利

  • Excel 格式的市场预测 (ME) 表
  • 3 个月的分析师支持

目录

第 1 章 简介

  • 研究假设和市场定义
  • 研究范围

第二章调查方法

第三章执行摘要

第四章 市场洞察

  • 市场概况
  • 产业吸引力-波特五力分析
    • 供应商的议价能力
    • 购买者/消费者的议价能力
    • 新进入者的威胁
    • 竞争对手之间的竞争
    • 替代品的威胁
  • 产业价值链分析
  • COVID-19 对产业的影响

第五章 市场动态

  • 市场驱动因素
    • 资料量不断增加以及人工智慧、扩增实境和虚拟实境技术的进步
    • 电子零售成长
  • 市场问题
    • 严重依赖传统流程,缺乏意识和专业知识

第六章 市场细分

  • 按解决方案
    • 软体
    • 服务
  • 按部署
    • 本地
  • 按功能
    • 客户管理
    • 店内营运(库存管理、绩效管理)
    • 供应链管理
    • 行销和商品行销(定价和产量比率管理)
    • 其他功能(运输管理、订单管理)
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 俄罗斯
      • 欧洲其他地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 其他亚太地区
    • 拉丁美洲
    • 中东和非洲

第七章 竞争格局

  • 公司简介
    • SAP SE
    • IBM Corporation
    • Alteryx Inc.
    • Salesforce.com Inc.(Tableau Software Inc.)
    • Oracle Corporation
    • Retail Next Inc.
    • SAS Institute Inc.
    • QlikTech International AB(Qlik)
    • Altair Engineering Inc.
    • Hitachi Vantara LLC

第八章投资分析

第九章:市场的未来

简介目录
Product Code: 52446

The Retail Analytics Market size is estimated at USD 6.60 billion in 2025, and is expected to reach USD 8.12 billion by 2030, at a CAGR of 4.23% during the forecast period (2025-2030).

Retail Analytics - Market - IMG1

Retail data analytics follows analyzing historical data to enable smarter decisions, improve operations, and increase sales. Both end-user data and back-end processes, such as supply chain and inventory management, have been primary sources for data analytics.

Key Highlights

  • Business Intelligence and Analytics systems have been integrated with back-end applications to understand better shoppers' behavior to facilitate consistent customer conversation. The omnichannel strategies being adopted led analytics to cater to multiple channels by consolidating disparate data sources and communicating with customers on their preferred channel. A further step towards intense personalization has strengthened the typical customer Lifetime Value and touchpoints. Therefore, current retailers have been more inclined to collect and analyze data like Location, Social sentiment, Clickstream, etc.
  • Digitalization to improve consumer experience and retail operations by obtaining consumer behavior data is propelling the retail analytics industry forward. The major advantage of employing retail analytics is that it provides particular and meaningful data on customer behavior. When business managers understand how to estimate financial returns, it makes managing any area of a firm much easier, and retail analytics gives information that businesses use to make choices. Retail analytics give merchants with a clear picture of the business, from analyzing social media comments to understanding a campaign's effects on store conversion rates.
  • According to an IBM survey, executives estimated that COVID-19 had expedited their digitalization by 67%; moreover, the outbreak drove them to prioritize 'Improve operational efficiency' as its top priority by 92%.
  • The advent of e-commerce has rendered traditional growth avenues across brick-and-mortar store expansions as outdated. Online platforms, localized assortments, and international market expansions have transformed the way merchandising analytics is approached. Significant competition from the online platforms led retailers to enter that space and offered a clearer picture of assortment, pricing, promotions, sourcing, replenishment, and in-store planning and execution.
  • The COVID-19 outbreak has triggered the global digitalization of retail enterprises. The pandemic forced a radical shift away from conventional retail and toward modern e-commerce strategies centered on powerful digital tools like AI and analytics. The growing popularity of online consumption habits has intensified the demand for digital innovation and disruption. Growing the use of AI to customize shopping experiences, increase customer retention, and improve sales efficiency would benefit corporate growth.

Retail Analytics Market Trends

In-store Operation Hold Major Share

  • In-store-operation-based analytics has become an indispensable part of a brick-and-mortar retailer's operating strategy. With benefits ranging from offering the right product to the right customer, further insight on loyal customers leads to the development of strategies to increase customer stickiness.
  • When retailers deliver customized experiences to their consumers using several technology such as evaluating customer preferences, recognizing customer location in-store, targeted promotions, and purchase habits, they accomplish digital transformation in shops. The shop monitoring technology analyzes these trends to offer valuable insights that assist merchants in increasing revenue, sales, and footfalls.
  • For instance, in June 2022, Amazon launched its new Store Analytics service. The e-commerce behemoth is now attempting to profit on its physical storefronts by providing marketers with data on what customers buy.
  • According to NewGenApps, merchants who choose to fully utilize the potential of big data analytics may improve their operating profits by 60%. Furthermore, the omnichannel retailer may monitor in-store buyer behaviour and deliver timely deals to customers to incentivize in-store purchases or later online sales, therefore keeping the transaction within the retailer's fold.
  • Quantzig, a data analytics and advisory firm, increased its in-store sales through micro-targeting and the profits by 12% for a fashion retailer based out of Germany. The retailer faced challenges focused on delivering insights to the right resource at the right time, lack of clearly articulated analytics strategy, and poor data quality.

Europe to Hold Significant Share

  • The European segment is strong, owing to the presence of large players like IBM Corporation and SAP SE, which are the leading providers of predictive analytics and advanced retail analytics software. Moreover, more than six million companies are active in this region and employ more than 33 million people. Europe is home to many of the large-scale retailers in the world, such as Tesco, Carrefour, Lidl, Metro AG, and Aldi.
  • One of the most popular online hobbies is internet shopping. It offers a large range of items to customers and a plethora of sales difficulties to e-commerce firms. Furthermore, the growing use of cloud services in the retail business will provide possibilities in the European retail analytics market in the near future.
  • For example, in October 2022, Avery Dennison announced a collaboration with SAP to address waste concerns in the retail industry by connecting their individual analytic product cloud, enabling supermarkets to monitor and optimize the expiry dates of their items. The firms have agreed to incorporate SAP Analytics Cloud into Avery Dennison's atma.io connected product cloud through an OEM arrangement. According to reports, the data is provided to the SAP Analytics tool via atma.io, as well as items labeled using Avery Dennison's digital identifying technology, such as radio frequency identification (RFID).
  • The use of sophisticated analytics to make internet shopping smarter and the combining of physical and online data can assist merchants in customizing their targeting, leading to incremental improvements in e-commerce sales and contributing to the expansion of the market's European sector.

Retail Analytics Industry Overview

The Retail Analytics Market is moderately competitive. Some of the major players operating in the market include IBM Corporation, Oracle Corporation, SAP SE, SAS Institute Inc., and Salesforce.com Inc. (Tableau Software Inc.), among others. The players in the market are innovating in providing strategic solutions to increase their market presence and customer base. This enables them to secure new contracts and tap new markets. Some of the key developments in the market are:

  • In September 2023, Oracle, in partnership with Uber, announced Collect and Receive, a new offering on the Oracle Retail platform connecting retailers and consumers to enhance and enrich last-mile delivery. Supported by the Oracle Retail Data Store and cloud platform technologies, retailers can link to Uber Direct, the company's delivery solution, through pre-integrated APIs. This joint solution allows retailers to rebalance inventory while giving customers more choices, including same-day and scheduled delivery options, order pickup, and returns to the closest retail or postal location.
  • In June 2023, in partnership with Google, Salesforce expanded strategic partnerships to help businesses utilize data and AI to deliver more personalized customer experiences, better understand customer behavior, and run more effective campaigns at a lower cost across marketing, sales, service, and commerce. Two new data and AI innovations will bring real-time data sharing with enhanced predictive and generative AI capabilities. Businesses can use their data and custom AI models to better predict customer needs and reduce the cost, risk, and complexity of synchronizing data across platforms.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Buyers/Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Intensity of Competitive Rivalry
    • 4.2.5 Threat of Substitute Products
  • 4.3 Industry Value Chain Analysis
  • 4.4 Impact Of COVID-19 on the Industry

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increasing Volumes of Data and Technological Advancements in AI and AR/VR
    • 5.1.2 Increasing E-retail Sales
  • 5.2 Market Challenges
    • 5.2.1 Significant Reliance on Traditional Processes and Lack of Awareness and Expertise

6 MARKET SEGMENTATION

  • 6.1 By Solution
    • 6.1.1 Software
    • 6.1.2 Service
  • 6.2 By Deployment
    • 6.2.1 Cloud
    • 6.2.2 On-premise
  • 6.3 By Function
    • 6.3.1 Customer Management
    • 6.3.2 In-store Operation (Inventory Management and Performance Management)
    • 6.3.3 Supply Chain Management
    • 6.3.4 Marketing and Merchandizing (Pricing and Yield Management)
    • 6.3.5 Other Functions (Transportation Management, Order Management)
  • 6.4 By Geography
    • 6.4.1 North America
      • 6.4.1.1 United States
      • 6.4.1.2 Canada
    • 6.4.2 Europe
      • 6.4.2.1 Germany
      • 6.4.2.2 United Kingdom
      • 6.4.2.3 France
      • 6.4.2.4 Russia
      • 6.4.2.5 Rest of Europe
    • 6.4.3 Asia-Pacific
      • 6.4.3.1 China
      • 6.4.3.2 Japan
      • 6.4.3.3 India
      • 6.4.3.4 Rest of Asia-Pacific
    • 6.4.4 Latin America
    • 6.4.5 Middle East and Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 SAP SE
    • 7.1.2 IBM Corporation
    • 7.1.3 Alteryx Inc.
    • 7.1.4 Salesforce.com Inc. (Tableau Software Inc.)
    • 7.1.5 Oracle Corporation
    • 7.1.6 Retail Next Inc.
    • 7.1.7 SAS Institute Inc.
    • 7.1.8 QlikTech International AB (Qlik)
    • 7.1.9 Altair Engineering Inc.
    • 7.1.10 Hitachi Vantara LLC

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET